Skip to main content
Log in

Isolated attosecond pulse generation in the water window by tailored MIR femtosecond pulse laser

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We numerically simulate the high-order harmonic generation in the frequency domain and attosecond pulse generation in the time domain from helium atom irradiated by a tailored MIR femtosecond pulse laser, which is synthesized by a 12 fs/1800 nm/2.71 × 1014 Wcm−2 driving pulse laser and two gating pulse lasers including an 8 fs/1200 nm/1.62 × 1014 Wcm−2 and an 8 fs/800 nm/1.26 × 1014 Wcm−2. This combined pulse has the characteristics of a single-cycle mid-infrared femtosecond pulse with high intensity and stable carrier envelope phase, which current few-cycle MIR femtosecond pulse laser technology can’t qualify. It is found that broadband supercontinuum harmonic spectra with regular plateau structure are generated, and the radiation efficiency of the harmonics is greatly improved compared with the case of a single pulse and two-color optimal synthesize pulses. After inverse Fourier transform, an isolated 66 as pulse with higher intensity can be obtained by superposing supercontinuum harmonics from the 70th to the 515th order. Here, the phase differences between three pulses have little effect on the numerical simulation results when they vary in the range of 0.3π.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. G. Sansone, F. Kelkensberg, J.F. Pérez, F. Morales, M.F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J.L. Sanz, Nature 465, 763 (2010)

    Article  ADS  Google Scholar 

  2. F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S.D. Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J.B. Greenwood, F. Martín, M. Nisoli, Science 346, 336 (2014)

    Article  ADS  Google Scholar 

  3. J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, Z. Chang, Nat. Commun. 8, 186 (2017)

    Article  ADS  Google Scholar 

  4. T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, L.F. Ardana, H.J. Wörner, Opt. Express. 25, 27506 (2017)

    Article  ADS  Google Scholar 

  5. Z. Tibai, G. Tóth, M.I. Mechler, J.A. Fülöp, G. Almási, J. Hebling, Phys. Rev. Lett. 113, 104801 (2014)

    Article  ADS  Google Scholar 

  6. A. Mak, G. Shamuilov, P. Salén, J. Hebling, Y. Kida, B. McNeil, T. Tanaka, N. Thompson, D. Dunning, Z. Tibai, G. Tóth, V. Goryashko, J. Phys. Conf. Ser. 1067, 032016 (2018)

    Article  Google Scholar 

  7. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, Science 314, 5798 (2006)

    Article  Google Scholar 

  8. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, Science 320, 1614 (2008)

    Article  ADS  Google Scholar 

  9. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, Z. Chang, Opt. Lett. 37, 3891 (2012)

    Article  ADS  Google Scholar 

  10. X. Ren, J. Li, Y. Yin, K. Zhao, A. Chew, Y. Wang, S. Hu, Y. Cheng, E. Cunningham, Y. Wu, M. Chini, Z.H. Chang, J. Opt. 20, 023001 (2018)

    Article  ADS  Google Scholar 

  11. K. Midorikawa, Nat. Photonics 16, 267 (2022)

    Article  ADS  Google Scholar 

  12. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, J. Itatani, Nat. Commun. 5, 3331 (2014)

    Article  ADS  Google Scholar 

  13. F. Silva, S.M. Teichmann, S.L. Cousin, M. Hemmer, J. Biegert, Nat. Commun. 6, 6611 (2015)

    Article  ADS  Google Scholar 

  14. A.D. Shiner, H.C. Trallero, N. Kajumba, H.C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Phys. Rev. Lett. 103, 073902 (2009)

    Article  ADS  Google Scholar 

  15. S. Watanabe, K. Kondo, Y. Nabekawa, A. Sagisaka, Y. Kobayashi, Phys. Rev. Lett. 73, 2692 (1994)

    Article  ADS  Google Scholar 

  16. K. Kondo, Y. Kobayashi, A. Sagisaka, Y. Nabekawa, S. Watanabe, J. Opt. Soc. Am. B 13, 424 (1996)

    Article  ADS  Google Scholar 

  17. I. Kim, C. Kim, H. Kim, G. Lee, Y. Lee, J. Park, D. Cho, C. Nam, Phys. Rev. Lett. 94, 243901 (2005)

    Article  ADS  Google Scholar 

  18. P. Matía-Hernando, T. Witting, D.J. Walke, J.P. Marangos, J.W.G. Tisch, J. Mod. Opt. 65, 737 (2017)

    Article  ADS  Google Scholar 

  19. C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, S. Stagira, Phys. Rev. A 79, 1 (2009)

    Article  Google Scholar 

  20. T. Siegel, R. Torres, D.J. Hoffmann, L. Brugnera, I. Procino, A. Zair, J.G. Underwood, E. Springate, I.C.E. Turcu, L.E. Chipperfield, J.P. Marangos, Opt. Exp. 18, 6853 (2010)

    Article  Google Scholar 

  21. C. Jin, G. Wang, H. Wei, A.T. Le, C.D. Lin, Nat. Commun. 5, 4003 (2014)

    Article  ADS  Google Scholar 

  22. L.V. Keldysh, Zh. Eksp, Teor. Fiz. 47, 1945 (1964)

    Google Scholar 

  23. M.F.H. Faisal, J. Phys. B 49, 22 (1973)

    Google Scholar 

  24. H.R. Reiss, Phys. Rev. A 22, 1786 (1980)

    Article  ADS  Google Scholar 

  25. M. Lewenstein, P. Salieres, A.L. Huillier, Phys. Rev. A 52, 4747 (1995)

    Article  ADS  Google Scholar 

  26. M.V. Ammosov, N.B. Delone, V. Krainov, Zh. Eksp, Teor. Fiz. 91, 2008 (1986)

    Google Scholar 

  27. L. Anh-Thu, R.R. Lucchese, S. Tonzani, T. Morishita, C.D. Lin, Phys. Rev. A 80, 013401 (2009)

    Article  ADS  Google Scholar 

  28. W. Cao, P.X. Lu, P.F. Lan, X.L. Wang, G. Yang, Phys. Rev. A 74, 063821 (2006)

    Article  ADS  Google Scholar 

  29. H.C. Du, B.T. Hu, Phys. Rev. A 84, 023817 (2011)

    Article  ADS  Google Scholar 

  30. E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S.D. Silvestri, Phys. Rev. A 61, 063801 (2000)

    Article  ADS  Google Scholar 

  31. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20220101028JC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Gao Chen.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Sun, J. & Chen, G. Isolated attosecond pulse generation in the water window by tailored MIR femtosecond pulse laser. Eur. Phys. J. D 76, 161 (2022). https://doi.org/10.1140/epjd/s10053-022-00486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00486-4

Navigation