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Abstract. The atomistic description of the folding process of a structureless chain of amino acids to a
functioning protein is still considered to be a challenge for computational biophysics. An in-depth under-
standing of protein-folding can be achieved through atomistic dynamics accounting for the solvent effects,
combined with the theoretical description of conformational changes in shorter polypeptide chains. The
present paper studies the folding transitions in short polypeptide chains consisting of 11 alanine residues in
explicit solvent employing all-atom molecular dynamics. The multiple observed folding ↔ unfolding events
of the peptide are interpreted as a dynamic process and rationalised through the analysis of the potential
energy surface of the system. It is demonstrated that alanine polypeptide folding dynamics is governed by
the backbone dihedral angles and involves the formation of spontaneously folded α-helices which emerge
and live for ca. 1–20 picoseconds. The helical content within the polypeptide at different temperatures was
quantified through a statistical mechanics approach, which showed a reasonable agreement with the results
of molecular dynamics simulations and experiments performed for alanine-rich peptides.

1 Introduction

Proteins constitute Nature’s toolbox that, among other
functions, transport and digest compounds, provide
structural integrity, regulate chemical processes or serve
in immune responses in a cell [1,2]. It is striking to know
that most of these functions are encoded by a set of
20 different amino acids that could fold into a specific
three-dimensional structure, which defines the function
of the folded protein [2]. The necessary effort to deter-
mine protein structures on an atomistic level is a chal-
lenging task, while observing the dynamics of protein
folding with a similar accuracy is yet to be achieved [2].
Protein folding has interested researchers for decades as
it is closely related to the fundamental understanding
of protein biosynthesis and functionality [3–6].

Modern computational tools allow to perform atom-
istic simulations on the scale of hundreds of thousands
of atoms and beyond [7–12]. However, the folding pro-
cess of even the smallest proteins typically requires
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simulations on the order of hundreds of microseconds
[13–16]. These timescales are feasible with specialised
computational infrastructure for atomistic molecular
dynamics (MD) [17], but timescales of few microseconds
are much more common [7–12,18–21]. Computational
architectures are thus still largely insufficient to per-
form all-atom protein folding simulations of arbitrary
size routinely.

The problem of protein folding is conceptually related
to the studies of conformational transitions in short
polypeptide chains [4,5,22–24], and the dynamics of
polypeptide chains can be described computationally
at the relevant spatial and temporal scales. Several ear-
lier studies employed ab initio and classical mechan-
ics methods to investigate properties and dynamics of
polypeptides in vacuum [22,24–28]. It was shown that
the backbone dihedral angles φ and ψ (see Fig. 1C),
the so-called twisting degrees of freedom, are the inter-
nal coordinates, which define the energy landscape of
a polypeptide chain and permit describing the folding
↔ unfolding phase transition in polypeptides of varied
length. The importance of backbone dihedral angles for
the folding process is consistent with experimental data
as the backbone dihedral angles are typically used to
differentiate between a variety of structural conforma-
tions, i.e. the secondary structure motifs, in peptides
and proteins [29–31].
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Fig. 1 A Illustration of the A11 peptide in a water box with some helical residues at the C-terminal and a coil structure at
the N-terminal. Carbon, nitrogen, oxygen and hydrogen atoms are coloured in cyan, blue, red and light-grey, respectively.
B Zoom-in on the peptide in A omitting water for clarity. C Definition of the backbone dihedral angles φ (purple) and ψ
(orange) of residue i inside an alanine polypeptide. The backbone atoms that determine these dihedrals are shown as larger
spheres and are labelled. Atoms are coloured like in A

The present investigation employs an extensive all-
atom MD approach to study the folding ↔ unfold-
ing process in alanine polypeptides (see Fig. 1A) in
explicit solvent. The results permit analysing the inter-
nal dynamics of the polypeptides including the tem-
poral evolution of the backbone dihedral angles, helix-
propagation and helix-stability, which provides atom-
istic insights into the helix-formation process high-
lighting a difference in the helix-propagation dynam-
ics towards their N- and C-termini. Using steered MD,
we have established the potential energy surface for
an individual residue in a solvated alanine polypep-
tide. This potential energy surface was used to explain
the observed polypeptide backbone dynamics and was
employed for a statistical mechanics description of the
temperature-dependent behaviour of the polypeptide’s
helicity for different peptide lengths.

2 Methods

MD simulations were performed using NAMD [7,32]
utilising the CHARMM36 force field with CMAP cor-
rections for proteins [33–35] including explicit water
solvent in a TIP3P model. Simulation preparation and
analysis were done using VMD [36], where STRIDE [37]
was used for the assessment of secondary structures
of the polypeptides. The peptides were constructed
using Pep McConst [38], interfaced through the online-
platform VIKING [39].

2.1 Isobaric molecular dynamics of the A11 peptide

A peptide consisting of 11 alanine residues (A11) was
used to quantify the folding ↔ unfolding dynamics. It
was constructed using Pep McConst [38] in a pure right-
handed α-helix conformation and solvated in a cubic
water box spanning 50 Å in each direction adding up to
a total of 11,661 atoms (see Fig. 1A). Periodic boundary
conditions were imposed, and no ions were added corre-
sponding to a salt concentration of 0 mol/l. The simula-
tions were carried out using NAMD [7,32] at a constant
pressure of 1 bar using the Nosé–Hoover–Langevin pis-

ton pressure control [40,41] with a period of 200 fs and
a decay time of 50 fs. For the initial isobaric equilibra-
tion simulation of the system, the temperature was set
at 300 K and controlled through the Langevin thermo-
stat with a damping coefficient of 5 ps−1. A timestep of
1 fs was used to integrate the equations of motion for all
atoms in the system. The non-bonded interactions with
a smooth switching starting at 10 Å were cut off at 12
Å. Long-range Coulomb interactions were excluded to
avoid artefacts from periodic boundary conditions for
small simulation cells [42], especially in the case of the
potential energy surface calculation.

The system was equilibrated for 250 ns. The equili-
brated system was further simulated for 250 ns at 300
K to sample the data for analysis. Thereafter, the tem-
perature of the system was increased by 2 K using the
Langevin thermostat. The step-wise increase in temper-
ature was repeated every 250 ns until the temperature
of the system reached 350 K, resulting in 26 simulations
at different temperature values and a total simulation
time of 6.5 µs.

2.2 Potential energy surface calculations

The potential energy surface was computed for a cen-
tral residue inside an A5 polypeptide constructed using
PepMcConst [38]. The A5 peptide was solvated in a
cubic water box spanning 30 Å in each direction, result-
ing in a system containing 2930 atoms. Prior to the MD
simulation, the system was minimised for 2000 conju-
gate gradient steps. The temperature in the simulation
was set to 310 K, while all other parameters were iden-
tical to those from the simulation described above. To
construct the potential energy landscape of a residue
inside a polypeptide, the simulations were performed
with constrained values of the dihedral angles φ and ψ
(see Fig. 1C) for all residues of the A5 peptide. By con-
straining all backbone dihedral angles, the computed
energy surface describes the residue-specific interac-
tions in a segment of five or more residues with identical
backbone dihedral angles. The potential energy surface
for a residue was then computed as a function of these
angles. Test calculations showed that five residues need
to be constrained in order to produce potential energy
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surfaces, which match the known statistical distribu-
tions of the backbone dihedral angles. The dihedral
angles were constrained using a harmonic potential of
the form:

U = k

(
5∑

i=2

(φi − φref)
2 +

4∑
i=1

(ψi − ψref)
2

)
, (1)

where the force constant k was assumed 200 kcal/mol
in order to tightly control the dihedral angles in the
simulation. The summations in Eq. (1) are performed
over the residues in the peptide; (φi,ψi) denote the dihe-
dral angle values for the ith residue (see Fig. 1C). The
summations account for the fact that φ is not defined
for the first residue (N-terminal residue), while ψ is not
defined for the last residue (C-terminal residue) in the
polypeptide. The reference dihedral angles (φref ,ψref)
were initially set to be φref = −60◦ and ψref = −60◦
for the equilibration simulation, which was carried out
for 10 ns in the isobaric ensemble and another 10 ns in
the isochoric ensemble.

To obtain the potential energy surface of a residue
inside the A5 peptide, the reference dihedral angles φref

and ψref were incrementally and independently altered
by 4◦ every 2 ns. First, the reference dihedral angle ψref

was changed, while φref was kept fixed at −60◦, followed
by a change of ψref at a fixed φref value. The calcula-
tions resulted in multiple simulations where the values
of the reference dihedral angles were separated by 4◦.
Each of these simulations was 2 ns long corresponding
to a total simulation time of 16.2 µs.

The potential energy for a residue was calculated for
each combination of the angles φ and ψ as the time-
averaged energy of the central residue in the A5 pep-
tide. The contribution of the constraining potentials
was excluded from the potential energy calculations.

3 Results

3.1 Conformational dynamics in the A11 peptide

Backbone dihedral angles φ and ψ are the internal
degrees of freedom that permit separating different con-
formations of the polypeptide [29,30]. Figure 2A illus-
trates the probability density distribution of the dihe-
dral angles recorded for the simulated A11 peptide. All
residues inside the peptide, except the terminal ones,
experience similar dynamics and have therefore con-
tributed equally to the presented probability distribu-
tion. The distribution qualitatively resembles the dis-
tribution of dihedral angles found in experimental mea-
surements of protein conformations [29,30] by means of
position and shape of the four most dominant back-
bone conformations. Regions with probability densi-
ties above 10−5 degrees−2 correspond to typical con-
formations that are adopted by the residues of proteins
[31,43]. These regions are used for the definition of the
four important domains in the (φ-ψ)-plane. The αR

region embraces the right-handed α-helices, the 310-
helices and the π-helices [29]. The β region includes
the β-strands and the PII-spirals [29]. The αL region
is associated with the left-handed α-helices [29], while
the remaining P region describes the left-handed ver-
sion of the PII-spirals [29]. Certain combinations of the
φ and ψ angles are sterically forbidden for a polypeptide
resulting in the white areas shown in Fig. 2A.

The studied A11 peptide was found in different con-
formations, which are characterised by the different
backbone dihedral angles as defined in Fig. 2B.

Figure 3 illustrates peptides associated with the four
backbone conformations that are defined in Fig. 2
including the peptide–peptide hydrogen bonds for the
two helical conformations. Here it can be seen that
the two α conformations (Fig. 3A, C) can be recog-
nised by the peptide–peptide hydrogen bond, whereas
as shown in Fig. 3B, D, the P and β-conformations
do not have any peptide–peptide hydrogen bonds due
to the stretched nature of these conformations. Fig-
ure 4A illustrates the probabilities for the residues in
the peptide to occupy these different conformations.
The figure shows that the most probable conforma-
tion is the β-conformation with an average probability
computed for all residues (except the terminal ones)
being 0.6 at any temperature within the studied range.
The other occurrence probabilities in decreasing order
are the αR, αL and P conformations. Remarkably, the
probabilities for the residues in a peptide to occupy the
other conformations also do not feature any pronounced
temperature dependence in the temperature range of
300–350 K. Fluctuations in the occurrence probabili-
ties of β and αR conformations show a certain corre-
lation because residues in the A11 peptide most often
switch between these two conformations (see Fig. 4B).
Figure 4A shows that a small residual probability of
about 0.1 is observed, indicating that some residues in
the peptide are found without any definite secondary
structure (denoted as “other” in Fig. 4A). Table 1 com-
pares the relative occupation of these states found in
this work with results for A2 peptides. Here, the rela-
tive occupation of the helical conformations αR and αL

is significantly larger than for a A2 peptide because the
latter is too short to form stable helical structures.

Figure 4B shows the rate of conformational changes
such as the αR � β transitions. The rate for the
αR � β transitions is defined as the sum of the rates
computed for the αR → β and β → αR transitions.
All transition rates were found to be, with negligible
deviation, in a detailed balance, as expected for the
sufficiently sampled peptide at the equilibrium.

The transition rates in Fig. 4B show that the over-
all peptide is most often found in a coil-like state in
which the residues explore the (φ, ψ)-plane. This coil-
like behaviour is reflected in a frequent change of con-
formations of residues in the peptide. Summing all
conformational change rates reveals the temperature-
dependent timescale of the conformational changes. At
300 K, a conformational change of some residue is
observed about twice per nanosecond and at 350 K;
it turns out to be about 10 changes per nanosecond.
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Fig. 2 Possible conformations of alanine polypeptides. A Probability distribution of the backbone dihedral angles com-
puted for the A11 peptide in solution. The white area indicates the sterically forbidden regions of conformations that
could not be realised. B Definition of the different dihedral conformations in the (φ, ψ)-plane according to the regions with
probability densities above 10−5 degrees−2 shown in A. Coloured contours encapsulate the dihedral angles associated with
different peptide conformations (see text)

Fig. 3 Examples for the four dominating backbone conformations of alanine polypeptides. Hydrogen bonds between back-
bone atoms and between the peptide and some exemplary water molecules are drawn with dashed lines, while their lengths
are given in Ångström. The coordinates of the structures are taken from the potential energy surface calculations. The
conformations are sorted as: A αR conformation, B β conformation, C αL conformation and D P conformation

The transitions αR � β occur most frequently and are
temperature-dependent. The β � αL transitions or the
αL � P transitions occur about once per nanosecond,
while the transitions between the αR � αL conforma-
tions or between αR � P conformations are rather rare.
Note that about 80% of the residues in the A11 peptide
are found in the left half of the (φ, ψ)-plane, i.e. have
φ < 0. Therefore, conformational changes most likely
occur clockwise in the (φ, ψ)-plane, involving one of the
αR → β → αL → P transitions, or anti-clockwise,
involving one of the P → αL → β → αR transi-
tions. Thus, the seemingly unordered dynamics of a
solvated A11 peptide follows certain rules and is in fact

not entirely random. Table 2 lists the expected tran-
sition rates between the conformations. A comparison
with studies on A2 peptides in Table 3 reveals that the
A11 peptide considered here performs torsional tran-
sitions at least one order of magnitude slower than
the A2 peptide. Furthermore, the fact that transition
rates reported in the earlier studies [44–46] are not in
detailed balance indicates that their respective transi-
tion rates were not converged. Thompson et al. experi-
mentally observed helix propagation rates on the order
of h = 0.1 ns−1 [47], which is 1/5 of the k(β → αR)
rate computed here and thus fulfils the requirement
h <

∑
x k(x → αR), where x denotes different con-
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Fig. 4 Statistics of A11 polypeptide dihedral conformations and their influence on the adjacent residues. A Average
occupation of different conformations by a residue in the A11 peptide averaged over time at specific temperature. A dihedral
angle outside any of the regions defined in Fig. 2B is referred to as “other”. B Average rate of conformational transitions
as a function of temperature. The rate of conformational transitions was computed for all residues and was averaged over
the simulation time span at a specific temperature. C Conditional probability of a residue to have the αR conformation
once a certain number of adjacent residues also has the αR conformation. The lines differentiate the direction in which the
neighbouring residues are considered: the N-direction counts towards the N-terminal of the peptide and the C-direction
counts towards the C-terminal of the peptide. D Similar to C but for the β conformation

formations. Needless to say, this inequality must hold
since a helix can only propagate as fast as a residue
can change its backbone dihedral conformation but not
all changes will lead to stable helix propagation. Previ-
ously, inconsistencies of experimental helix propagation
rates [47–50] to computational rates [47,51,52] were
found since the latter were at least two orders of mag-
nitude faster, which is not the case here.

Figure 4C, D illustrates the correlation of residues
in the A11 peptide in terms of conditional probabili-
ties of observing a residue in the αR or β conforma-
tion depending on the conformation of the neighbouring
residues. Figure 4C shows the probability for a residue
to have the αR conformation once the adjacent residues
are also found in the αR conformation. Excluding the
terminal residues in the peptide, each datapoint cor-
responds to residues with a different number of neigh-
bouring residues in a certain conformation. Residues
3–9 were used to evaluate the conditional probabilities
where a residue had 0 or 1 adjacent residues in a cer-
tain conformation, whereas for 4 adjacent residues only
the middle residue 6 was used, due to the necessity of
having sufficient neighbours.

For an arbitrary residue in the A11 peptide, the blue
dotted line and the orange squares in Fig. 4C reveal that
there is a probability of about 0.2 that the residue is
found in the αR conformation once either the preceding
or the following residue has a different conformation.
The probability for a residue to be in the αR conforma-
tion increases to 0.4 once one neighbouring residue is
also found in the αR conformation, and the probability
becomes 0.6 once two preceding or following residues
are found in the αR conformation. The yellow line in
Fig. 4C shows that the probability of a residue to be
in the αR conformation is at 0.2 once neither of its
neighbouring residues are found in the αR conforma-
tion. However, the probability increases to 0.75 if the
neighbouring residues from both sides of a residue are
found in the αR conformation.

The results in Fig. 4C show the effect of the αR con-
formation of adjacent residues in the N-terminal direc-
tion or the C-terminal direction to a given residue. The
effect converges once 2 adjacent residues have an αR

conformation which indicates that at least 3 residues
are necessary to initialise an α-helix. As soon as 3
residues nucleate into a helix, the helical structure can
extend further with an equal probability in any direc-
tion. The probability of a residue to be found in the β
conformation (Fig. 4D) shows a relatively smaller cor-
relation to adjacent residues in the β conformation and
already saturates as soon as a residue has a single adja-
cent residue in the β conformation. In the case that
no residues in both directions are found in the β con-
formation, the probability for the middle residue is at
0.4, which is even lower than the respective probability
in only N-direction or C-direction (0.5). If both neigh-
bours appear not to be in the β conformation, they are
most likely to be in the αR conformation, in which case
the middle residue is found in the αR with a probability
of 0.8 (see Fig. 4C). The strong correlation of residues
in αR conformation thus decreases the probability of
finding the middle residue in the β conformation when
both of its neighbours are not in the β conformation.

Figure 5A–D shows distributions of the so-called
dihedral difference computed for residues 3–9 of the
A11 polypeptide. The dihedral difference quantifies the
proximity of the backbone dihedral angles of different
residues. Once two neighbouring residues appear in the
same conformation, the dihedral difference is small but
is expected to increase once the residues adopt different
conformations. All residues in a helical fragment of the
peptide have similar backbone dihedral angles (within
αR), so the dihedral differences within that fragment
are expected to be minor (i.e. ca. 20◦).

The dihedral difference between two sets of dihedral
angles (φi,ψi) and (φj ,ψj) can formally be defined as a
Cartesian two-dimensional distance which accounts for
the periodicity of the angles φ and ψ as follows

d(i, j) = min
k,l∈{0,1}
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Table 1 Relative population of different states from this work and from other works

Refs. αR β αL P Other

Bolhuis [44] 0.0946 0.8962 0.0042 0.0048
Chodera [45] 0.1028 0.8492 0.0017 0.0013
This work 0.2070 0.6310 0.0655 0.0183 0.0782

For this work, the means of data in Fig. 5A except the point at 300 K are used. Reference [44] presents data from Multiple
State Transition Interface Sampling of an A2 peptide, and Ref. [45] presents data from Replica Exchange MD of an A2

peptide

Table 2 Transition rates k between different states from this work given in units of ns−1 for a temperature of 300 K

k(αR � β) k(αR � αL) k(αR � P ) k(β � αL) k(β � P ) k(αL � P )

1.0916 −0.0056 0.0164 0.5047 0.0566 0.4835

The data in Fig. 5B were taken except for the point at 300 K and fitted with a linear function, which was then evaluated
at 300 K. k(αR � αL) is an artifact of the fit due to low transition rates. Can be taken as 0

Table 3 Transition rates k between different states from this and other works given in units of ns−1

Refs. k(αR → β) k(β → αR) k(αR → P ) k(P → αR)

Bolhuis [44] 25.64 3.057 0.6027 17.76
Chodera [45] 33.5 4.6 0.1 18.5
Chekmarev [46] 35.1 1.10 0.906 13.9
This work 0.5455 0.5461 0.0087 0.0077

References [44–46] feature calculations using the A2 peptide. The respective authors employed Multiple State Transition
Interface Sampling [44], Replica Exchange MD [45] and Brownian dynamics within a potential of mean force [46]

(√
(| φi − φj | −k · 360◦)2 + (| ψi − ψj | −l · 360◦)2

)
.

(2)

Here, φi and ψi are the dihedral angles measured for
residue i, while φj and ψj are the dihedral angles mea-
sured for residue j. The definition of d(i, j) respects the
periodicity of the dihedral angles φ and ψ and ensures
that, for example, the dihedral difference between
(170◦, 0◦) and (−170◦, 0◦) yields a value of 20◦. The
dihedral difference for a residue i calculated towards the
N-terminal is defined as d(i, i − 1), while the dihedral
difference calculated towards the C-terminal is d(i, i+1)
since the counting of residues in a polypeptide always
goes from the N-terminal to the C-terminal direction.

Figure 5A–D shows the dihedral differences calcu-
lated for residues 3–9 where the residues were found in
the αR (blue), αL (green) conformations or without any
particular structural motif. The datapoints for the lat-
ter scenario were plotted using the same colour (blue)
as the datapoints for residues with the αR conformation
to ensure that the observations about the formation of
αR motifs in the peptide are a consequence of the inter-
nal dynamics of the polypeptide and not a consequence
of a very particular definition of the αR conformation.
Similar results for other polypeptide conformations, as
well as three-dimensional plots showing the d(i, i ± 1)
dependence on φ and ψ, are presented in Figs. S1 and
S2.

The data points shown in blue in Fig. 5 correspond
to residues found in the αR conformation, thereby

being part of a helical fragment in the A11 peptide.
Helix propagation is the process where a helical frag-
ment extends because residues neighbouring the frag-
ment also adopt the αR conformation. During the
helix propagation, the dihedral difference between the
last helical residue i and the first non-helical residue
decreases. This decrease can either be accompanied
by fluctuations in the backbone dihedral angles of the
last helical residue (flexible helix-propagation, black
ellipsoids in Fig. 5) or keeping the backbone dihedral
angles of the last helical residue more consistent (rigid
helix-propagation, red ellipsoids in Fig. 5). For helix-
propagation in the N-terminal-direction (see Fig. 5A,
B), the flexible helix-propagation is more pronounced,
while helix propagation in the C-terminal direction (see
Fig. 5C, D) is dominated by the rigid helix-propagation.
It is thus clear that there is a difference in the typical
dynamics of helix propagation, although helix propaga-
tion is expected to occur with an equal probability in
either direction (see Fig. 4C). The asymmetry in helix
propagation is related to the asymmetry of the amino
acids’ backbone. For the left-handed helices (αL con-
formation, green datapoints), the effect has not been
observed.

The orange ellipsoids in Fig. 5A–D highlight the data
points where a certain residue i has a helical conforma-
tion, while its neighbouring residue in N-terminal direc-
tion (see Fig. 5A, B) or in C-terminal direction (see
Fig. 5C, D) does not. In these cases, a residue i with
the αR conformation has the dihedral distance to the
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Fig. 5 Distribution of dihedral differences. A Dihedral difference d(i, i − 1), Eq. (2), plotted over φ for a residue i with
respect to its neighbouring residues in the N-terminal direction. The residues i ∈ {3, ..., 9} from the A11 peptide were
considered. MD frames, where the residue i is either in the αR (blue), αL (green) or outside any of the conformations
defined in Fig. 2B (same blue as αR, see text for an explanation), are included in the plot. Ellipsoids mark datapoints that
correspond to non-helical neighbouring residues (orange), flexible helix-propagation (black) and rigid helix-propagation
(red). B Similar to A, but showing d(i, i − 1) as a function of ψ. C Dihedral difference d(i, i + 1) as defined in Eq. (2)
plotted over φ. Otherwise similar to A. D Similar to C, but showing d(i, i − 1) as a function of ψ

neighbouring residue j of d(i, j) > 100◦. Such a con-
dition can be illustrated by considering circles in the
(φ, ψ)-plane centered somewhere at the αR region and
having a radius of 100◦ (see Fig. S3). When (φi, ψi) is
the center of such a circle, then (φj , ψj) lying outside of
the circle is logically equivalent to d(i, j) > 100◦. Thus,
the datapoints which are encapsulated by the orange
ellipsoid lie outside any of these circles.

A suitable description of the overall conformation
of a peptide can be achieved through defining its
helical content. The simulated A11 peptide was ini-
tialised as an ideal α-helix. The initial helical struc-
ture becomes distorted after around 170 ns at 300 K
(420 ns if equilibration is included) and, over the course
of the performed MD simulation, multiple folding and
unfolding events were observed (see Fig. 6A). The per-
formed analysis illustrates that the A11 peptide does
not form long-lived stable helices in the studied tem-
perature range. With increasing temperature, helical
fragments occurred more often but also broke apart on
a shorter timescale. This behaviour corresponds to an
increased flexibility of the peptide, which can be quanti-
fied through the increase in its conformational changes
(see Fig. 4B). Figure 6B–D shows the statistics of heli-
cal stability, namely the probability of observing a cer-
tain number of helical residues (see Fig. 6B), the proba-
bilities for changes in the length of the helical fragment
over one picosecond (see Fig. 6C) and the expected life-
time of helical fragments (see Fig. 6D). Figure 6E shows
the average potential energies of helical fragments of

certain length. The analysis in Fig. 6B–E included the
simulation results obtained at temperatures 302–350 K,
so the initial helical structure which persisted through a
part of the production simulation at 300 K was not con-
sidered. Helical fragments most frequently are formed
from 3 residues (see Fig. 6E), although such constructs
turn out to be very short-living, having a probability
of 0.5 to break apart after 1 ps (see Fig. 6C) and a
very short lifetime even up to the 95th percentile (see
Fig. 6D). Similarly, helical fragments consisting of 4
residues were also found to be rather unstable. With at
least 5 residues in a helical formation, the number of
helical residues in the peptide had a reasonable chance
to persist (see Fig. 6C), and remarkably the A11 pep-
tide with 5 helical residues does not further stabilise
when the helical content is further increased.

Configurations with longer helices occur less fre-
quently compared to those having 3 helical residues
since there are less ways to realise a longer helix in the
A11 peptide. Peptides with 6 helical residues turn out
to be significantly more stable than fragments with 3
or 4 helical residues (see Fig. 6C, D), which is reflected
in the probability to find helical fragments with 6 heli-
cal residues (see Fig. 6B) The interaction energies in
Fig. 6E show another peculiarity of intermediately sized
helices. A peptide with 6 helical residues typically has
stronger interactions within the peptide and weaker
interaction with the solvent. This fact indicates that an
A11 peptide with 6 helical residues is found in a confor-
mation in which the contact with the solvent is avoided,
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Fig. 6 Statistics on the number of helical residues in the A11 peptide. A The number of helical residues in the A11 peptide,
plotted over temperature and simulation time. The temperature was increased stepwise from 300 K to 350 K every 250
ns, so the plot shows a single simulation where the temperature was increased. B Probability distribution of the number
of helical residues in the A11 peptide. The probability not to contain any helical residues, P0, is indicated. Since at least 3
residues are necessary to form a helical structure, it is not possible to find only 1 or 2 helical residues, i.e. P1 = P2 = 0.
C Probability of a peptide with a certain number of helical residues to increase, persist or decrease in the helical content
within the next 1 ps. D Lifetime of a certain number of helical residues in the peptide. The average value is plotted in
black, while the 40–95 percentiles are shown with colour. E Average interaction energies within the peptide (blue, solid
line), between the peptide and the solvent (orange, dotted line) and the sum of these interactions (yellow, dashed line) as
a function of the helical content of the peptide

an effect that can be attributed to the hydrophobicity
of alanine and a possible proximity of the oppositely
charged terminal residues.

The sum of interaction energies in Fig. 6E shows that
there is an energetic advantage for the peptide to form
the helical structures. There is, however, no advantage
to form longer helices, indicating that the A11 peptide
is mostly observed in the random coil-like state already
at 300 K.

3.2 Statistical mechanics model

Steered MD simulations of the A5 peptide were per-
formed in explicit water to calculate the potential
energy surface of a residue in the polypeptide. The
approach used here computes the energy surface of the
middle residue in the variable space in which all five
residues adopt the same backbone dihedral angles. It
is therefore assumed that the secondary structures of
interest (energy minima on the surface) show similar
backbone dihedral angles for all the residues involved
and that these structures are locally stabilised by
interactions with residues not further apart than two
residues. An A5 peptide was chosen because two adja-
cent helical residues in each direction are sufficient for
the convergence of the conditional probabilities to be
helical (see Fig. 4C) and of helix stability (see Fig. 6C).
The resulting potential energy surface of the central
residue is shown in Fig. 7A, which describes the poten-

tial energy of a residue inside a solvated alanine pep-
tide computed as a function of the twisting dihedral
angles φ and ψ. The potential energy surface was sep-
arated into the contributions describing a bound ala-
nine, as illustrated in Figs. S4 and S5. The energy land-
scape in Fig. 7A corresponds to the probability density
of the A11 peptide conformations shown in Fig. 2A,
observed for the unconstrained MD simulations with
explicit water. The agreement shows that the approach
for calculating the potential energy surface is reason-
able and permits to establish the potential energy of
a residue with respect to its twisting degrees of free-
dom. The result in Fig. 7A shows that a potential
energy of not more than 6 kcal/mol is sufficient for a
residue to freely switch between the αR and β confor-
mation, while a potential energy of 8 kcal/mol is needed
for the β � αL transition and a potential energy of
10 kcal/mol is necessary for the αL � P transition.
It is therefore natural that the frequency of the con-
formational changes αR � β in Fig. 4B is the largest,
followed by the β � αL transitions and finally by the
αL � P transitions. Other transitions are suppressed
due to energy barriers of 12 kcal/mol and above. The
potential energy barriers here are higher by a factor of
2–3 compared to previous results reported for implicitly
solvated A2 [46]. In the present investigation, the larger
change in potential energy is due to the simultaneous
steered movement of multiple residues.
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Fig. 7 Potential energy surface of the middle residue inside the solvated A5 peptide calculated using steered MD and its
statistical model interpretation. A Average potential energy surface of the middle residue inside the solvated A5 peptide
computed as a function of the two twisting dihedral angles φ and ψ with the potential energies counted relatively to the
global energy minimum. B Potential energy surface describing the bound state of the residue inside a peptide, where energies
are calculated with respect to the local minimum in the αR conformation as defined in Fig. 2. The highest energy of the
bound state is characterised by the hydrogen bond energy EHB. C Potential energy surface of the unbound state of a residue
inside a peptide. The lowest energy of the unbound state matches the hydrogen bond energy EHB. D Helicity of peptides of
different lengths. Helicity was calculated within the framework of the statistical model using the potential energy surfaces
shown in B and C, which represent the bound and the unbound states, respectively. The numbers indicate the length of
the peptides. E Comparison of the temperature dependence of the helicity calculated using the statistical model (lines).
The statistical model is compared to the experimentally measured helicity of an alanine-rich peptide consisting of 21 amino
acids (blue triangles) [47] and to the average helicity obtained from the MD simulations of the A11 peptide (red circles)

The folding ↔ unfolding dynamics of the polypep-
tide can be described through a two-state statistical
mechanics model using the potential energy surface
shown in Fig. 7A [26,27]. The potential energy surface
needs to be separated into the potential energy sur-
faces of the bound state corresponding to an αR helix
conformation and the unbound state corresponding to
the random coil state, where residues constantly switch
conformations. For such a description, the minimum of
the αR conformation should first be set to 0 kcal/mol.
The energy necessary to break a single hydrogen bond
EHB can be used as a threshold value to separate the
bound and unbound conformations; the procedure is
illustrated in Fig. S6. The potential energy surface,
within a threshold value EHB counted from the αR min-
imum, therefore describes the bound state (see Fig. 7B),
while the potential energy greater than EHB is repre-
senting the unbound state (see Fig. 7C). The statistical
mechanics model is sensitive to the choice of EHB. This
stems mainly from the helix initiation factor β defined
as [26]:

β = exp
(

−3EHB

kBT

)
, (3)

where kB is the Boltzmann factor and T is the tempera-
ture of the system. Hydrogen bond energies in solvated
peptides in simulation and experiment are expected
to be in the range of 0.5–1.5 kcal/mol and are sig-
nificantly weaker than the hydrogen bonds in vacuum
[53,54]. A characteristic value of the hydrogen bond
energy of EHB = 1.65 kcal/mol was used here, corre-
sponding to the value computed in explicit water using
the CHARMM force field [53]. The partition function
for a residue of the peptide that has one of the two
possible conformations can be constructed as:

Zb =
∫∫

KEHB

exp
(

−εb(φ, ψ)
kBT

)
dφdψ, (4)

Zu =
∫ 180

−180

∫ 180

−180

exp
(

−εu(φ, ψ)
kBT

)
dφdψ. (5)

The partition function of a residue in the bound state,
Zb, follows Boltzmann statistics and includes the poten-
tial energy of the bound state εb shown in Fig. 7B. The
partition function is built from an integral over KEHB

which is the area accessible from the minimum in αR
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limited by the maximal energy EHB. In Fig. 7B, the
area KEHB is coloured. For the partition function of the
unbound state, Zu, the integration is performed over
the whole span of the dihedral angles φ and ψ, consider-
ing the energies εu shown in Fig. 7C. The partition func-
tions Zb and Zu of a residue permit constructing the
partition function of the peptide of length n. Employ-
ing the approximation of a singular helical fragment,
the partition function of a peptide can be constructed
for the purpose of calculating the expectation value of
helicity. The theory developed by Yakubovich et al. [26]
was adopted here to consider 3 residues necessary for
helix nucleation and to allow a fully helical peptide. The
partition function can then be written as:

Z = Zn
u + β

n∑
k=3

(n − k + 1)Zk
b Zn−k

u . (6)

Here, β, Zb and Zu are defined in Eqs. (3)–(5). The
first term, Zn

u , accounts for the possibility of a peptide
to have all residues in the unbound state. The summa-
tion is performed over k, the number of residues in the
helical fragment, which is required to be at least 3 to
be recognised as a helix and can maximally be n, i.e.
the number of amino acids in the peptide. The term
(n − k + 1) counts the number of ways to fit a helix of
length k inside a peptide of length n. Using the par-
tition function in Eq. (6), it is possible to derive the
expectation value for the fraction of helical residues fH
in a peptide as:

fH =
1
Z

β

n∑
k=3

k

n
(n − k + 1)Zk

b Zn−k
u . (7)

The fraction k/n defines the helical fraction of k
residues in a peptide of length n. Other terms are
the same as defined in Eq. (6). The Zimm–Bragg [55]
parameters can be inferred from this model with the
helix-propensity s given as s = Zb/Zu and the helix
nucleation parameter σ = βst where t depends on the
number of residues necessary to initiate a helix [27].
Note that thermodynamical characteristics are calcu-
lated with a different approximation for the partition
function [26].

Equation (7) is used to compute the expected helic-
ity for peptides of different lengths (see Fig. 7D). The
helicity drops with increasing temperature due to the
thermal fluctuations in the system. For peptides con-
taining 8–21, 35 and 99 amino acids, the tempera-
ture dependence of the helicity was plotted explicitly,
while other peptide lengths are indicated by a colour
gradient. For small peptides, the helix-initiation fac-
tor β dominates the resulting helicity and for longer
peptides the difference in entropy between Zb and Zu

becomes the most relevant contribution which causes
a steep slope. Longer peptides are expected to have a
higher helical fraction which drops at latest around 350
K. Helicity-dependencies for longer peptides become
closely packed; the addition of another residue causes

only a minor change in the behaviour of the whole pep-
tide.

The helicity calculated within the two-state statisti-
cal model for an A21 peptide was compared with exper-
imental measurements in Fig. 7E, showing a reason-
able agreement. Between 270 and 300 K, the statistical
model overestimates helicity compared to experiment
[47] probably due to the higher helix propensity of ala-
nine (A) compared to arginine (R) [56]. The latter was
present in the alanine-rich peptide used in the experi-
ment. It is also possible that the present model needs
to be extended such that it also includes the β con-
formations of the amino acids in a similar way to the
αR conformation studied here. These additional states
in the partition function would not contribute to the
helicity and would reduce the helical fraction overall.
A study on four slightly different 24 residues long pep-
tides containing 16 alanines found helical fractions of
fH = {0.61, 0.61, 0.54, 0.53} at 277 K [57], which is
close to the prediction of the statistical model for an
A16 peptide of fH = 0.6 but significantly lower than
the prediction for the A24 peptide of fH = 0.9.

Replica Exchange MD performed on an A21 peptide
resulted in an approximately linear dependence of helic-
ity on temperature and fH = 0.5 at 350 K, but the
deviations can probably be attributed to the parame-
terisation of the φ and ψ angles [58]. Comparison of the
helicity values for the A11 peptide with the helicity data
gathered from MD shows that the results of MD sim-
ulations yield helicity values that fluctuate around the
value obtained from the statistical model. The compar-
ison illustrates that in order to gather consistent results
about the helicity for the A11 peptide, simulations on
the order of at least few microseconds are necessary
for each temperature of interest. The necessary simula-
tion time for sufficient sampling is expected to increase
further for longer peptides due to the larger conforma-
tional space.

The potential energy surface of a residue utilised
in the presented two-state statistical model employing
steered MD of the A5 peptide only includes interac-
tions with the solvent and its two neighbouring residues
in either N- and C-terminal directions. The correlation
of neighbouring residues in the αR conformation (see
Fig. 4) influences the next two adjacent residues mak-
ing this approximation reasonable. For polypeptides
composed of different amino acids, such an approach
could, however, yield insufficient results. Interactions
of longer side-chains would make it necessary to sim-
ulate longer peptides in order to calculate the correct
potential energy surfaces.

Comparison of helicity calculated with the use of the
statistical model with experimental measurements or
simulations of long polypeptides demands further cau-
tion. For sufficiently long polypeptides, tertiary struc-
tures would emerge, which are not included in the
two-state model. Longer peptides will also include sev-
eral helical fragments, which would alter the statistics
and the results. Multiple helical states are not con-
sidered in the present study because of the following
reasons. Firstly, any additional helical fragment, which
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can be considered independent from the other one,
should be at least 3 residues apart. The first peptide
in which two helical fragments might occur is there-
fore the A9 peptide, having the secondary structure
3×Helix - 3×Coil - 3×Helix. This represents only a
single state with two helical fragments compared to∑9

k=3(9−k +1) = 28 states with a single helical motif,
following Eq. (6). Secondly, the boundary amino acids
of helical residues are less flexible, which suppresses the
weight of multiple helical fragments due to the loss in
entropy [27]. Thirdly, the helix-initiation factor needs
to be accounted for at least twice when a peptide has
more than one helical fragment, which also reduces the
statistical weight of such helix-composite structures. To
conclude, the presented theory in single-helix approxi-
mation should be sufficient for peptide lengths in which
tertiary structures are not very dominant.

4 Conclusion

The dynamics of a solvated alanine polypeptide was
studied with the use of atomistic MD simulations and
a statistical approach. It was shown that the backbone
dihedral angles of the residues in the polypeptide chain
cluster in conformations, which are commonly associ-
ated with certain secondary structure motifs in pro-
teins. The dynamics of the backbone dihedral angles
was characterised by conformational transitions where
the αR � β transitions turned out to be the dominating
ones, while the β � αL transitions and αL � P transi-
tions occurred less frequently. The results of the simu-
lations revealed that prolongation of helical fragments
in the direction of the N-terminal or C-terminal dif-
fers with respect to the statistical occupation of differ-
ent folding pathways. Furthermore, helix-propagation
in the C-terminal direction was described as rigid helix
propagation which might extrapolate to more complex
peptides as well and thus provide an explanation why
proteinogenenis from the N-terminal to the C-terminal
could be advantageous [59].

Once folded, helical fragments showed a short lifetime
on the order of ca. 1-20 picoseconds. The investigation
revealed that the helix stability increased significantly
once the helical fragment becomes extended from 3 to
5 residues. Given the assumption that during the fold-
ing process secondary structures form first which then
form tertiary structures, 5 or less residues are expected
to be insufficiently stable and cannot support the for-
mation of tertiary structures. This indicates a possible
identification of those parts of a protein which nucleate
the folding process: only helical fragments longer than
5 residues could be considered as nucleation candidates
for the formation of tertiary structures.

The four conformations that encompass 90% of the
probability density in the (φ, ψ)-plane coincide with
local minima in the potential energies computed here.
These minima are separated by energy barriers of less
than 4 kcal/mol. The potential energy surfaces for ala-
nine residues were used to construct a partition func-
tion that permitted to calculate the fractional helicity

of the peptide. The predictions of the statistical model
revealed that most residues in short peptides, with up
to 15 amino acids in length, are expected to be in a
flexible coil-like conformation at a temperature of 300 K
and that alanine polypeptides of an arbitrary length are
not able to hold a stable α-helix conformation at tem-
peratures about ca. 350 K. Persistent helices beyond
that temperature are possible, however, these helices
are expected to be stabilised by the formation of ter-
tiary structures.
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