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Abstract. Monte-Carlo simulation calculation have been performed for 855 MeV electrons channeling
in (110) planes of a diamond single crystal. The continuum potential picture has been utilized. Both,
the transverse potential and the angular distributions of the scattered electrons at screened atoms are
based on the Doyle-Turner scattering factors which were extrapolated with the functional dependence
of the Moliére representation to large momentum transfers. Scattering cross-sections at bound electrons
have been derived for energies less than 30 keV from the double differential cross-section as function of
both, energy and momentum transfer, taking into account also longitudinal and transverse excitations.
For energies above 30 keV the Mgller cross-section is used. The dynamics of the particle in the continuum
transverse potential has been described classically. Results of the channeling process are presented in terms
of instantaneous transition rates as function of the penetration depth, indicating that channeling can be
described by a single exponential function only after about 15 pm when the equilibration phase has been
reached. As a byproduct, improved drift and diffusion coefficients entering the Fokker—Planck equation

have been derived with which its predictive power can be improved.

1 Introduction

There exists since long considerable interest in the
channeling process of ultra-relativistic electrons and
positrons at planes of a single crystal. Of particular
interest is the emission of undulator-like radiation in
periodically bent crystals aiming in the construction
of compact radiation sources in the MeV range and
beyond, see, e.g. Korol et al. [1]. However, collisions of
the leptons with atoms and their electrons comprising
the crystallographic planes lead to a de-channeling pro-
cess being in conflict with the envisaged application. It
is, therefore, of utmost importance to understand the
channeling as well as the de- and also re-channeling
processes in detail, in particular also for electrons.
While “de-channeling” is a well-defined technical
term, the de-channeling length is not. Indeed, a particle
entering a straight channel needs some time, or a certain
length interval, to equilibrate. Therefore, a constant de-
channeling rate, leading to an exponential decrease of
the channel occupation does generally not exist. Reli-
able experimental information on the rate distribution
as function of the penetration depth of the particle in
the crystal is rare, or does not exist at all. However, such
information is required to determine the channeling effi-
ciency, i.e., that fraction of particles which follow the
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exponential decay law. This paper intends to contribute
to this task via Monte Carlo simulations. This way, also
the re-channeling process has been studied, including
the time when re-channeling happens, the number of
planes the electron passes until it finally re-channels,
the probability distribution, and the efficiency of the
re-channeling process.

For many years channeling of ultra-relativistic par-
ticles in single crystals was described in the contin-
uum potential picture introduced by Lindhard [2]. In
particular, the Fokker—Planck equation with which the
de-channeling process can be calculated is based on
it, see, e.g. the papers of Backe et al. [3,4] and refer-
ences cited therein. Objections against the reliability of
the solutions of the Fokker—Planck equation have been
formulated by Tikhomirov [5, ch. 3.4] but it has not
been investigated whether its predictive power can be
improved, or not. This paper will contribute also to this
subject, in particular it focuses on a better approxima-
tion of the Kitagawa—Ohtsuki drift and diffusion coeffi-
cients [6] still in use.

If experimental results do not exist, insight into the
addressed issues can be obtained by Monte Carlo simu-
lation calculations. There exist detailed considerations
with sophisticated codes, see, e.g. Pavlov et al. [7] and
references cited therein, and the continuum potential
picture seems to be outdated. However, a detailed com-
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parison between the former and the latter with a dis-
cussion of advantages and disadvantages does not exist.
This issue will be addressed in passing.

The continuum potential picture has the advan-
tage that channeling can be classically understood for
ultra-relativistic particles in a rather intuitive manner.
In particular, for ultra-relativistic leptons the dynam-
ics can be treated classically. Deficiencies which were
already pointed out by Lindhard, namely that the
potential has fluctuations in the Angstrom scale, should
have only little impact. A lepton moving in forward
direction at angles in the order of sub milli-radians feels
during its passage the potential of thousands of single
atoms. It is therefore expected that the potential can be
described rather precisely in such a collective approach.
Moreover, it can be considered as decoupled from hard
scattering events at atoms and bound electrons since
those interactions are rare.

Channeling in the continuum potential picture was
treated by a number of authors, for an overview see,
e.g., Korol et al. [8, Chapter 2]. In particular, the
DYNECHARM++ code of Bagli and Guidi [9], and
CRYSTALRAD of Sytov et al. [10] should be men-
tioned. In this work yet another code was developed
which is restricted to the above-mentioned problems,
however, with the possibility to investigate the sensi-
tivity on special interactions like low energy plasmon
excitations.

The paper is organized as follows. Sections 2-5 sum-
marize the theoretical background. In Sect. 2 basic defi-
nitions and the particle dynamics are described. In Sect.
3 the Doyle-Turner representation of the electron scat-
tering factors at screened atoms is introduced with a
modification into the Moliere approach. The latter has
the advantage that it avoids a cutoff at large momen-
tum transfers. On the basis of this data set the elec-
tric potential, the electron density, and collision cross-
sections are calculated. The latter finally leads to the
scattering distribution needed for the Monte Carlo sim-
ulations. In Sect. 4 and in the appendix A the electron-
electron interaction is treated. At energy losses larger
than about 30 keV the Mpgller cross section has been
applied. For less than 30 keV models of Ashley [11]
and Fernandez-Varea [12] were utilized leading to the
double differential cross-sections as function of both,
the energy and momentum transfer to bound electrons
from which the electron-electron scattering distribution
was derived. In Sect. 6 preparatory calculations are
described which include the test of the model using the
example of an amorphous carbon foil, and the calcu-
lation of the initial probability distribution. In Sect. 7
results of the Monte Carlo simulations for channeling
and re-channeling of 855 MeV electrons in straight and
bent (110) planes of diamond are presented, and for the
latter compared with published results obtained with
the MBN explorer package. In Sect. 8 drift and diffu-
sion coefficients, which enter the Fokker—Planck equa-
tion, were calculated for both, scattering at atoms and
separately at electrons, and the impact on its predicting
power is discussed. The paper closes with a conclusion
in Sect. 9.
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2 Particle dynamics

For a plane crystal a laboratory coordinate system
(z,y,z) has been chosen with the z-axis located in
the crystallographic plane, the horizontal z-axis per-
pendicular to it, and the vertical y-axis such that a
right-handed coordinate system results. The planes of
a bent crystal are assumed to be circularly shaped with
a constant bending radius R, and a concave shape with
respect to the z-axis. The entrance angle into the crys-
tal 1o is the projected angle onto the (x,z) plane mea-
sured with respect to the z axis. The rotation of the
crystal around the y-axis has a negative sign for clock-
wise, and positive one for counter clockwise rotation.
Analytically the following expressions were used which
were derived from the equation of a circle with its centre
at g = —Rcosg and zg = Rsinyg:

x:R-(\/1—(sin¢0—z/R)2—coswo) (1)

do_ __sindo—2/R @)
dz /(1 (singyo — 2/R)?

d? 1

T; ~ = for gy < 1. (3)

In the simulations it has been assumed that the par-
ticle moves freely a certain distance Az, for definition
see Eq. (4) below, which maybe randomly interrupted
by hard collisions with lattice atoms and/or electrons.
In the free movement the total energy is conserved while
in a collision a sudden transverse energy transfer hap-
pens without a change of the z coordinate. The calcu-
lations were performed in the (z, E ) phase space in a
grid with step sizes Az ~ 0.01 A and exact transverse
energy F| in the potential well. For the movement of
a particle at position x; with transverse energy F | i
to 41 = xp + Az a time Aty is required. In the
following the time is always multiplied by the particles
velocity v ~ ¢, and one obtains for the step size in z
direction

T +Axy

2
Azk = Atk v = pv/

—EJ_Jg 0 dz. (4)

T

Here pv = fym.c? is the momentum of the particle,
with v = 1/4/1 — 32 the Lorentz factor, = v/c and
me the electron rest mass. Despite the rather small
integration interval Az, the integral representation
must be chosen to obtain reliable Az, in particular
at the turning points in the potential wall U(z) since
the denominator tends there to zero. In that case Axy,
reduces to Az =| U"Y(E| i) — 2 | and Az doubles.
Eq. (4) is written for a bent crystal for which

U(z) = u(z) - (pv/R)z, (5)
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with u(x) the potential of the plane crystal. However,
this approach only holds for a constant bending radius
R, i.e., not if the bending radius is a function of z.

At the distance Azj, a mean number of collisions hap-
pen, given by the total cross-section, from which accord-
ing to the Poisson-statistics integer numbers are ran-
domly generated. Thereafter, the individual scattering
angle is randomly simulated for each scattering event
with a procedure described below from which the trans-
verse energy change is calculated.

3 Interactions with atoms

For the calculation of the channeling potential, as
well as for the also needed angular distribution of the
scattered electrons, the electron scattering factors at
screened atoms are required. There exist essentially two
approaches to access them, that of Moliere [13] and that
of Doyle and Turner [14]. Using the parameters

o™ =1{0.1, 0.55, 0.35} (6)
M =1{6.0, 1.2, 03}/ arr (7)

with which Moliere adapted the Thomas-Fermi func-
tion, a scattering factor

_ 4 Z ohe i aM

(47s)? —T— (BM)2

FM(s) (8)

a3 ‘
=1

results. It is compared in Fig. 1 with the Doyle-Turner
representation

6
2magachc
FPT(s) = TUUEES aexp(—bis?)  (9)
i=1

fo(s) [A]

s[A™]

Fig. 1 Electron scattering factors for atomic carbon. The
black full curve fM represents the Moliere approximation
[13] according to Eq. (8), the red one f27 that one of Doyle
and Turner [14] in the 6-parameter representation of Eq. (9)
with values taken from Ref. [15]
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using six pairs of parameters (a;, b;) which were quoted
by Chouffani and Uberall [15]. Here are arp =
0.8853 a9 Z~'/? the Thomas-Fermi screening factor,
ag the Bohr radius, Z=6 for carbon, and a = 3.5668
Athe lattice constant of diamond [16]. The quan-
tity s is related to the momentum transfer by ¢ =
2pv/(he)sin(¥/2) = 4ws, with ¥ the scattering angle.
Significant deviations up to a factor of 2.6 can be
observed for s < 0.2A~! while for larger values they
are less than 8%. Nevertheless, all calculations in this
paper have been performed in the Moliere approxima-
tion, however, with the modified parameter set

a = {0.09567, 2.9992-107°, 0.90430}
B ={9.61747, 1.2, 0.73393} Jarp (10)

which approximates the Doyle-Turner representation
to better than 8% in the full range of 0 < s/A < 6. The
reason is that fM(s) asymptotes to a Lorentzian rather
than to a Gaussian, avoiding the unrealistic cut-off for
large momentum transfers.

3.1 Calculation of the continuum potential

The potential u(x) has been calculated according to
chapter 9.1 of the textbook of Baier et al. [17] with the
Fourier-expansion coefficients

47 Z ache
= ——¢x

U2q2 3 (67
G) = T o (1) 5@ Y. 5% (1)

K3

and S(q) the structure factor. The one-dimensional
thermal vibration amplitude is u; = 0.04226 A [18].
The potential u(z) is shown in Fig. 2a, and in panel (b)
the electron density n;(z) across the channel. The lat-
ter has been derived from the potential u(z) with the
aid of the one-dimensional Poisson equation.

3.2 Scattering distribution for atoms

Collision with atoms will be described in the screened
potential with the modified Moliere parameters of Eq.
(10). The differential cross-section reads

do_(at)
df?

= 4(Za) (pc) <; 4sin2(19/2)+(ﬂi~hc/pc)2> '
(12)

Eq. (12) can be derived from the Mott cross-section by
replacing 1/¢* by

3

1-F ;
- (@) _ 3 T i 7 (13)
=1 ¢
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Fig. 2 a Potential of the (110) plane for a plane diamond
crystal as function of the inter-planar distance coordinate
x. The potential minimum has been normalized to zero, i.e.
the continuum border is located at E o = ug = 23.957
eV. b Electron density m.(z). The interplanar distance is
dy = 1261 A and the mean electron density for diamond
(1/dy) [5/%, ne()dz = Z - (8/a”) = 1.0578/A°

with F'(q) the atomic form-factor. At planar channel-
ing we are interested in the differential scattering cross-
section with respect to the x coordinate. It is obtained
from Eq. (12) for ¥ < 1, and 92 = 92 + 193 by integra-
tion over the ¥, coordinate and reads approximately

for 9, < 1
2
4(Za)? (hc> X
pc

~ [ 3 2
/ <Z 192 19/ 2 & h 2) d't9y/
—oo \I 92 + 9,7 + (Bi - he/pc)

(14)

do(at)
dd, (Vz) =

From the total cross-section

™ dolat) % gy lat)
ol = /O dz o (9)2msin 9 = / dgﬂ (9,)d0,
(15)

one obtains the mean number of collisions in an interval
Az, = Aty v as

8 (aty dp 2 70, 2
Amy, = $Azk *Oiot \/ﬂul exp(—xk/2u1). (16>

Here a = 3.5668 A is the lattice constant of diamond
[16], 8/a® the atomic number density, and d, = a/2v/2

= 1.261 A the inter-planar distance. Due to the distri-
bution of the atoms comprising the planes by thermal
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vibrations, the mean number of collisions is also a func-
tion of the inter-planar coordinate xy. The probability
distribution for m collisions at a mean Amy is given by
the Poisson-distribution function

(Amk)m

P (k) = m!

exp(—Amy). (17)

The underlying assumption for applying this Eq. (17) is
statistical independence of the collisions which should
be fulfilled if the particle direction does not coin-
cide with a crystal axis. In the simulation M} =
Random,, [Py, (k)] is randomly generated. For My = 0

the change of the scattering angle is Aﬁ](éat) = 0, other-
wise

A9\ — ZRandomlg P6,)],  (18)

=1

is obtained by a repeated generation of random num-
bers from the normalized scattering distribution func-
tion P(®)(f,). The latter has been derived from the
angular part of Eq. (14) after normalization with the
total cross-section Eq. (15). It is a rather involved
function of the parameters «; and ;. Numerically one
obtains

(at) (g 1.68969 - 10~8 + 62
P 0.) = (4.3114 - 10— 11 + 62)3/2
~ 3.56831 - 10~'% + 0.03096 - 67
(1.1526 - 10710 + §2)3/2
6.98552 - 1072 + 0.96904 - 62
- ) /786.89.
(7.4034 - 1079 + 62)3/2 ) /

(19)

The distribution function is shown in Fig. 3, full curve.
The total scattering cross-section according to Eq. (15)

is at(gtt) =24.45-10~* A2, A mean transverse energy gain

< AE|JAz >4 = 8/a%0pv/2 < 02 >, = 0.709
eV/um is obtained for a somehow arbitrarily chosen
cut-off angle of 0.02 rad. The mean number of collisions

is 8/a%0\*) = 4.31/pm.

4 Electron-electron interactions

4.1 General remarks

The mean transverse energy gain AES due to the scat-
tering of the beam particle at atomic electrons in an
interval Az = At v can approximately be related to
the mean electronic energy loss by the relation [19]

AB  ap AECD
Az 2y Az

(20)
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Fig. 3 Normalized atomic (full) and electronic (dot-
dashed) scattering distributions P (0,) and P)(0,),
respectively, as function of the scattering angle 6, for 855
MeV electrons on carbon atoms. The electronic distribu-
tion is very narrow extending vertically up to 3.73-10°. For
a logarithmic representation of the electronic distribution
see Fig. 16. The FWHM amount to 10.08 prad (atomic),
and 0.0752 prad (electronic). Both distributions have long
tails taken into account in the numerical simulation up to +
0.02 rad (atomic) and %+ 0.0345 rad (electronic). The root
mean squared scattering angles are < 62 >/2 = 19.6 prad
(atomic), and 7.33 prad (electronic)

0.00
-30

-20

with ap ~ 0.5. The mean energy loss AE(D) /Az can
either be taken from tables, e.g. [20], or calculated for
higher energies than 1 GeV with the equation [19]

AED)  2n(hea)? 87
Az mec2f2 a3

(21)

with the Sternheimer correction factor [21, Eq. (52),
Eq. (2), Table 2]

20mecpu /2
L.=In (W) — 2% — 4.606 - 1g() + 4.636.

(22)

The quantity I is the ionization potential for which I =
89.4 eV has been chosen [22], « the fine-structure con-

stant, and 8 = v/c. With AE(e) /Az = 737.82 eV /pm,

from Eq. (21), one obtains from Eq. (20) AE(fl)/Az =
0.110 eV/pm.

Unfortunately, this approach does not lead to a viable
simulation scheme. First of all, Eq. (20) describes a
mean value, however, required is the underlying scat-
tering distribution as function of the scattering angle.
In addition, ap =~ 0.5 is a rather crude estimate.

There are different possibilities to proceed. The sim-
plest one is to neglect scattering on electrons, leading
to an underestimate of the transverse energy trans-
fer. Another at the first glance also simple one would
be to treat the electrons as a free gas and apply
Mgller scattering. However, a proper low energy cut-
off is required since the Mgller cross-section diverges at
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zero energy transfer. The third possibility applied here
requires model assumptions on the generalized oscilla-
tor strength of the atom, as described below and in
more detail in appendix A. In the latter, also the impli-
cations of the free electron gas approach are discussed
in more detail.

4.2 Scattering distribution for electrons

From Eq. (51) of appendix A one obtains for the angular
differential cross-section

m

da(el) d20(el)

o (0) = / AW T (0.) 60, —0) +
anin(e)
700 9y 000 - 0,,) (23)
a2 m)

with the matching energy W,, = 27 keV, and the
matching angle 0,, = 0,,4.(W,,) = 194.2 prad from
righthand side of Eq. (53). For W > W,, all electrons
of the carbon atom are regarded as quasi-free, and the
Mgller cross-section in the laboratory system, Eqgs. (1)
and (2), of Ref. [23] can be applied (read in Eq. (1) for
the prefactor of the last term (v — 1)2/4? instead of
(v — 1)2/7). It should be mentioned, that at W, the
cross-sections, first and second term of Eq. (23), match
with an accuracy of 1.9 %. This is a remarkable result in
view of the fact that both cross-sections were calculated
by complete different approaches.
The total cross-section is the integral

Omax
(el)
o,ﬁj? = / dv 27rsin19dZQ (9). (24)
9=0

For ©,,4, = arcsin y/2/(y + 3)= 0.03454 rad has been
chosen, corresponding to the maximum energy loss of

(y—1)mec?/2 = 427.5 MeV. The total cross-section for

scattering at a single electron is U,EE? = 5.576 -10~* A2
This result agrees rather precisely with the integral
[(doD /aw) aW = 5.577 - 10~% A% of Eq. (49) in
appendix A.

Again, at planar channeling we are interested in the
differential scattering cross-section with respect to the
x coordinate. It is obtained by integration of Eq. (23)
over the ¥, coordinate and reads

Oy

(0,) = / dﬁydzg) () o)

Yy=—06,

do.(el)
dd,

with ©, = /02, — V2. The scattering distribution is
the normalized angular distribution of Eq. (25)

dO'(el) (el)

P(?l)(em) = de (ew)/o-tot

(26)
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which is depicted also in Fig. 3, dot-dashed line. It can
be approximated by the heuristic function!

A
P, = . 27
(62) 03| +c-02+b-10.]+a @7)
The mean squared scattering angle
@»’L‘
<0 >, = / 02 - PV (0,)d0, (28)
-

is a function of the integration limit @,. For O,,,, =
0.03454 rad < 62 >,= 5.370-10~ ! results. For the cal-
culation of the mean transverse energy gain, which is of
relevance for channeling, one obtains < AFE, /Az >
= (8 Z/a?) Ut(si)pv/Q < 0% >, = 0.136 eV/um which
would imply in Eq. (20) an improved ap = 0.618. This
mean transverse energy gain for electron-electron col-
lisions is a factor of 5.2 less than the corresponding
number for electron-atom collisions. The mean num-
ber of collisions per atom and unit longitudinal length
interval is (8Z/a®) ~a§§? = 5.899/pm,

The electron density ng;(x) across the channel is a
function of the coordinate x. It has been derived from
the potential u(x) with the aid of the one-dimensional
Poisson equation. The result is shown in Fig. 2b. The
mean number of collisions at the lateral position x; in
an interval Az, = Aty ¢ is

Ang = ne(zy) at(s? Azy. (29)

For this equation it has been assumed that the number
of collisions depends only on the electron density, i.e., a
possible dependence on the transverse coordinate x of
the cross-section has been neglected by the replacement
. . (el) . . .

with its mean o,,,”. However, considering a certain frac-
tion of the electrons as quasi-free “sea” electrons, say
20 %, for which the cross section can be described by
Mgller scattering with a low energy cutoff of 6 eV, does
not change the final simulation results significantly. The
probability distribution for n collisions at a mean Any
is given by the Poisson-distribution function

(Ank)"

Palk) = n!

exp(—Any). (30)

In the simulation N, = Random, [P, (k)] is randomly
generated. For N > 1 the change of the scattering angle
is

Ny,
Ay = ZR@Lndlorm,om [PED(0,). (31)
=1

L The parameters are Agss = 3.5 -1()_127 agss = 7.0 - 10_19,
bsss = 3.6-107 " and cgs5 = 7.0- 1078, The approximations
are better than about + 10 % in the interval 0.1 prad <
|0:] < 20 mrad. Below the lower and above the upper limit
the approximations become significantly worse.
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5 Transverse energy transfer at collisions

The Monte Carlo simulated change of the scattering
angle is with Eqs. (18) and (31) A9y, = A9\™) + A9{),
and the new scattering angle at the step from z; —
Tr41 = T + Axy is given by

'ﬂk—&-l =, + AV, = ﬂ:\/2 (El,k — U(l‘k)) /p’U + A9y,
(32)
with U(xy) the potential energy at position x. A scat-
tering by the angle Adj results in the new transverse
energy

E| g1 =Ej +pv/2- (A0)?
i\/zpv.(EM —Ulay)) Ad. (33)

The plus sign in front of the square root holds for
Az >0, 0rif By 11 —U(xg41) is negative, the minus
sign for Azy < 0. How these equations come about
is explained in Appendix B. Since Adj has both signs
which are distributed with equal probability, the first

(drift)
k

term in the second row of Eq. (33) AE] ;™ results in

a drift while the second one AEff) in fluctuations of
FE . Therefore, both terms contribute to de-channeling
while re-channeling is effected only by the second term.

With these definitions instantaneous drift and diffu-
sion coefficients may be defined as

ddl(ELVk, xp) = AEfzft)/Azk- =pv/2- (Aﬂk)z/Azk,
(34)
and

d2(ELk, ox) = 1/2- (AEff))Q/AZk =
=1/2-2pv(EL ) — Uzy)) - (A9%)? Az (35)

In contrast to the coefficients Dy (F,) and Ds(E))
which enter the Fokker—Planck equation as mean values
with respect of one oscillation period for a given E ,
these instantaneous quantities are functions of both, the
variables I/, and x. In addition, they have a functional
dependence on the penetration depth z. We come back
to this fact in chapter 8.

6 Preparatory calculations

6.1 Test of the simulation model for “amorphous
diamond”

The formalism described above has been checked by a
simulation of scattering of 855 MeV electrons passing
an amorphous carbon foil with the density of diamond
and a thickness of 120 pm. The mean number of col-
lisions amounted to 517.6 and 658.3 for collisions with
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Fig. 4 Simulation of the scattering distribution at the pas-
sage of 855 MeV electrons through an amorphous carbon foil
with the density of diamond and a thickness of 120 pm. A
number of 5000 tracks were simulated, error bars are of VN
type, with N the counts in a channel. The full curve repre-
sents the projected Gaussian angular distribution according
to the Particle Data Group with 0,5, . = 0.368 mrad, which
is quite similar to that one published by G.R. Lynch and O.IL.
Dahl [24] with 98% in the sample and ;. = 0.361 mrad

the atoms and electrons, respectively. The quantities
Aﬁ;at) and Aﬁf:l) were calculated with Eqgs. (18) and
(31), respectively. The scattering distribution as func-

tion of 6, = Aﬁ;at) —|—A19,(:l) is shown in Fig. 4. It should
be mentioned that the width of the electronic distribu-
tion amounts to about 35 % of the width of the atomic
distribution which cannot be neglected. The total dis-
tribution exhibits a slight asymmetry, clearly recog-
nizable when compared with the also shown Gaussian
angular distribution, which is typical for a Poisson dis-
tribution. In conclusion, the overall agreement is quite
good. This fact provides some confidence in trusting the
simulation calculations for the de-channeling length to
be described in Sect. 7.

6.2 Initial occupation probability

For the initial occupation probability in the potential
pocket a uniform distribution of the electron density
across the transverse = coordinate, and a Gaussian scat-
tering distribution with standard deviation o, = 12.7
prad for the angular divergence were assumed. The ini-
tial occupation probability can be analytically calcu-
lated according to Backe et al. [3, Eq. (15)]. The initial
distribution is shown in Fig. 5 for a straight diamond
crystal. Part of the distribution is located in the con-
tinuum, i.e., about 12 % occupy states with v > ug =
23.96 eV.
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Fig. 5 Initial distribution for a straight diamond crystal.
The black full curve represents the analytical expression of
Eq. (15) of Backe et al. [3], the red dots are simulation
calculation with 10,000 trials

7 Results

7.1 Results for channeling at (110) planes of
diamond and discussion

Now all ingredients are available to investigate the de-
channeling process. Simulations have been performed
for a target thickness of 200 pum for three consecutive
categories, primary channeling mode, de-channeling
mode, and secondary channeling mode. The channel-
ing history is terminated either if the electron leaves
the potential boundaries in the secondary channeling
mode, if it will not be de-channeled after a distance of
100 pm, or if it reaches the maximum transverse energy
of 10 ugp = 240 eV. Typical examples of trajectories are
shown in Appendix C.

Figure 6 shows the channel number distribution for
re-channeling. It is interesting to notice that the largest
probability for a re-channeling occurs at the direct

0.12
0.10
0.08
0.06
0.04
0.02

Probability

0.00

-15 -10 -5 0 5 10 15

Channel number

Fig. 6 Normalized channel number distribution. Channel
0 is the primary channel in which the particle was origi-
nally captured, neighbouring ones in which the particle re-
channelled are counted from there
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Fig. 7 a Primary channel occupation and b approxima-
tion of the de-channeling rate as function of the penetra-
tion depth z, with details shown in the inset. The channel
occupation is normalized to unity for No = 10,000 events.
The horizontal error band indicates the mean value \(z) =
(0.0624 + 0.0011)/pm as obtained for 14 < z/pm < 100

neighboring channels. This is expected since de- and
re-channeling are both governed by the same scatter-
ing distributions shown in Fig. 3 which are largest at
small energy transfers. The larger the transverse energy
becomes, the smaller the probability for re-channeling
will be. The electron may re-channel to channel 0 if it
returns after de-channeling, i.e. crossing the boundary
x = =+d,/2, again to channel 0. The integrated prob-
ability for re-channeling up to the second neighboring
channels amounts to 33%.

Figure 7 shows in panel (b) an approximation of the
instantaneous transition rate

L fl®) L AWNG)/No/A
els) = 5 = Jim, SRS 00)

as derived from the simulated channel occupation
numbers A(N(z)/Ny)/Az and the channel occupation
N(z)/Ny depicted in panel (a). For z less than about 14
pm the instantaneous transition rate is larger than the
constant mean value for z > 14 pm, see panel (b). This
is a consequence of the fact that the captured electrons
need a certain relaxation depth to achieve statistical
equilibrium. The structure of the rate for z < 5um is
shown in the inset. The constant mean value at statis-

@ Springer

Eur. Phys. J. D (2022) 76:153

1.0 ———r—— |
b a ]
0.8?() ]
Zo 06F §
2 04f
0.2¢F
0_0:%%%%
0.20
£
= 015
N
<
=| o
gf < 0.10
s =
<

0.05}

000;‘ PR S SRS SN U USSR SR SR S ‘7
0 10 20 30 40 50
z [um]

Fig. 8 Same as Fig. 7 for re-channeled particles. The hor-
izontal error band indicates the mean value A(z) = (0.0641
+ 0.0014)/pm as obtained for 14 < z/pum < 100

tical equilibrium is )\Ziafe(z) = (0.0624 £ 0.0011)/pm,
as calculated for the interval 14 < z/pum < 100. A frac-
tion of 18% of particles de-channel in the mean within
the relaxation depth.

A de-channeled particle may re-channel. Here such
an process is defined by the requirement that the par-
ticle must be reflected from the potential wall at least
once. Results for these secondary channeling process
are shown in Fig. 8. The rate exhibits similar features
like that shown for the primary process. The equilib-

rium depth turns out to be /\sleagw(z) = (0.0641 =+
0.0014)/pm for 14 < z/pm < 100 which is in accord
with the primary de-channeling rate. However, a much
larger fraction of 50% is lost within the relaxation depth
z < 14pm.

Alternatively, an effective de-channeling length Ay,
may be defined via the integral fz/:de Ade(2) dz = 1 with
zp the entrance position into the channel. One obtains
from Figs. 7b and 8b Ay, =~ 13 and = 8 pm for the first
and second de-channeling length, respectively. These
significant different values may be explained by the
fact that re-channeling happens mainly in the middle
of the channel where the overlap with the atomic den-
sity is largest. Therefore, a shorter equilibration time is
needed in comparison with the primary channel occu-
pation probability which is distributed over the whole
channel width.
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Fig. 9 Beam profiles for a 30.5 pum thick diamond crystal
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7.2 Channeling in bent crystals

For production of undulator-like radiation the crystal
must be bent. In the following, the diamond crystal
is assumed to have dimensions like the silicon crys-
tal described in Ref. [25], i.e., thickness of 30.5 um
and bending radius of 33.5 mm. Calculations were
performed as described in section 7.1. A primary de-

channeling rate )\fiﬁ”f(z) = (0.0668 £ 0.0010)/pm has

been obtained for the interval 14 < z/um < 100 for 75

% of particles imping the crystal. For re-channeled par-

ticles the de-channeling rate turned out to be A5(z)

= (0.0685 £ 0.0025)/pm, for the same interval with an
efficiency of only 14 % of particles imping the crystal.
While the primary de-channeling rate for the bent crys-
tal increases by only 7 % in comparison with the plane
one, the efficiency decreases dramatically.

In addition, the beam profile at the exit of the crys-
tal has been calculated. The result is shown in Fig. 9.
The profiles exhibit striking similarities with the results
shown by Mazzolari at al. [25, Fig. 3]. In particular the
deflection peaks due to channeling in (a) and (b), as
well as the volume reflection shift in opposite direction
for the tilted crystal in (a) can clearly be recognized.

7.3 Comparison with results from the MBN explorer
package

Simulation calculations have been performed on the
basis of the rather sophisticated MBN Explorer pack-
age as described in a number of publications of the
group around A.V. Korol, and A.V. Solov’yov et al.
In the paper of A.V. Pavlov et al. [7] simulation cal-
culations were done also for channeling of 855 MeV
electrons in diamond single crystals. Unfortunately, it
is not possible to compare the results directly with
results obtained in this paper. Therefore, Fig. 5¢ (red
curve) of Ref. [7] was digitized. The result is depicted
in Fig. 10a. In Fig. 10b an approximation of A,(z)
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Fig. 10 a Digitized fraction N,/N of 855 MeV electrons
in a straight (110) diamond crystal channel as taken from
Pavlov et al. [7, Fig. 5(c), red curve], and b differential quo-
tient normalized to the fraction of electrons in the (110)
channel. The estimated equilibrium de-channeling rate in
the shown interval A(z) = 0.083/um has an error of about
£0.01/pm, mainly due to digitization

according to Eq. (36) is shown. Particularly striking are
the zero-valued de-channeling transition rates for small
penetration depths. This behaviour reflects the accep-
tance criterion, meaning that a particle is accepted
to be in the channeling mode only if it changes sign
of its transverse velocity twice. The mean equilibrium
de-channeling length obtained in the interval between
10 < z/pm < 20 amounts to A, = 0.083/pm is about
(33+16)% larger than that one obtained in this work.
Whether this is a significant difference, or not, is in view
of the rather large uncertainty currently not clear.

8 Impact on the Fokker—Planck equation

The solution of the Fokker—Planck equation has been
described in our previous work [3] for planar channeling
experiments in straight crystals with 855 MeV electrons
from the Mainz Microtron MAMI. The drift coefficient,
and in turn also the diffusion coefficient, were calculated
with the Kitagava—Ohtsuki approximation [6] which in
[3] was represented in the following form

@ Springer



153 Page 10 of 15

Imaac

Du(BL) = 2va0 / dz (BL@
X L exp(—z°/2u?) dx (37)
V2mru
with
dpr 2 - M2
—(F = , (38
@ Fo0) = 7Ey o\ 2 — ey 0 Y
Tmax
z - mec?
TEL) v=2 / ——— da. 39
(1) 2(EL —u(x)) (39)
Tmin

The integration limits x;,;, and x4, are roots of the
equation £ = u(x). The quantity Xy = 0.1213 -10% ym
is the radiation length [26]. The results of the solution
of the Fokker—Planck equation depend strongly on the
choice of the parameter F, since it enters quadrati-
cally. In our previous work E; = 10.6 MeV was chosen
[27], resulting in a de-channeling length of 41.04 pm.
This value deviates by a large factor of about 2.6 from
the simulation calculation result of 1/A(z) = 16.0 um
quoted in the previous Sect. 7.1. In the following the
diffusion coeflicients entering the Fokker—Planck equa-
tion will be reanalyzed for both, (i) scattering at atoms
only, and (ii) including scattering at electrons with the
formalism described above.

(i) For scattering at atoms drift and diffusion coeffi-
cients may be written as

_pv 2 8 (at)
=5 <0z >at P

dp dp
x / E(EJ_J;)

D{"(E,)

exp(—z®/2ui)dz  (40)

V2Tuq
Tmin
and
DYO(BL) = B <0250 ot x [ 2B —u(@)
xS (8L, 0) \/‘iu exp(—2?/2ud)dz.  (41)
1

In Egs. (40) and (41) three terms can be distinguished
which have the following meanings: The pre-factor
(pv/2) < 6% >,; is the mean transverse energy gain for
a single elementary scattering process, the pre-factor

(8/a3) - ot(gf ) represents the mean number of collisions
per unit path length, and the integrals represent aver-
ages for one oscillation period accounting for the dis-
tribution of the scattering centers across the channel.
Defining in analogy to Eq. (37) an EZ,, = (pv)*Xo

< 0% >4 (8/a%)- atot), an microscopically defined scat-
tering parameter F, ,, = 12.13 MeV follows. With this
value the de-channeling length as derived from the solu-
tion of the Fokker—Planck equation reduces from Lgep
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Fig. 11 a Drift coefficients D1, and b diffusion coefficient
D5 as function of the normalized transverse energy F, /Up
for a straight diamond crystal with Uy = wug. Red curve:
contributions from atoms, blue from electrons, and black is
the total

=41.04 pm for E5 = 10.6 MeV to the significantly lower
value 31.3 pm.

(ii) For scattering at electrons the diffusion coeffi-
cients are defined in analogy to the scattering at atoms
as

DB, = % <02 >
l'wla.'rdP
[ G ELa) na(e) ol (22)
Tmin
and
e v
DL =5 <62 >a | 2BL-U()
dP e
x - (BL,w) na(x) o) de. (43)

The Fokker—Planck equation has been solved for the
sum of the atomic and electronic contributions

= DI"(BL) + DIV(BL),  (44)
= DB )+ DS(EL).  (45)

Dy(E,)
Dy(EL)

Drift and diffusion coefficients are shown in Fig. 11.
Although the contribution of the electrons seems to be
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Fig. 12 Transverse probability distributions. Red full
curves depict calculations with Eq. (38), blue dots simu-
lations. a E; = 29.8 eV well above the barrier, b 24.2 eV
at the barrier, ¢ 19.7 eV below the barrier, and d 4.7 eV
well below the barrier. The shadowed region indicates the
nuclear density distribution

small, scattering at electrons has a significant impact,
i.e., the de-channeling length reduces to 21.8 pm. This
value is still 36 % larger than that one obtained by
simulation calculations.

In order to examine possible reasons for the remain-
ing difference between the simulation calculation and
the solution of the Fokker—Planck equation, in Fig. 12
simulation results for the probability distribution are
compared with calculations of dP/dxz(E | ,x) with the
aid of Eq. (38). Both probability distributions look very
similar. Only a rather small enhancement of the simu-
lation results at the overlap region with the atomic den-
sity distribution may be discernable in panel Fig. 12b
for E| = 24.2 eV. Tikhomirov [5, ch. 3.4] discussed that
the probability distribution Eq. (38) cannot be applied
because of large transverse energy variations at domains
where the atomic density is large. This statement can
more or less be ruled out for diamond, however, such
fluctuations may well appear for crystals composed of
atoms with large atomic numbers Z.

9 Discussion and conclusions

The instantaneous transition rate concept has been
applied for channeling of particles in straight and bent
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crystals. It turns out that the de-channeling length of
electrons in single crystals cannot be described by a sin-
gle number since the transition rate approaches a con-
stant value only after a certain relaxation length. It is
in the order of about 15 pum for our example of 855 MeV
electrons channeling in (110) planes of diamond. A rea-
sonable approach to characterize a de-channeling length
would be the assignment of two numbers, the equilib-
rium de-channeling length and the fraction of particles
for which it holds. As demonstrated above, these frac-
tions drastically differ for the primary and secondary
channeling processes.

The main deficiency of the Fokker—Planck equation
may be found in the elimination of the transverse z
coordinate by averaging out any details associated with
the dynamics and the distribution of the scattering cen-
ters across the transverse channeling coordinate. This
fact reveals itself in the instantaneous drift and diffu-
sion coefficients for each step (Axy, Azy), see Eqgs. (34)
and (35). The mentioned deficiency can probably not
be cured by a parameter adaption. The Fokker—Planck
equation can, therefore, only be used to get a qualita-
tive idea of the channeling process.
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Appendices

A Double differential cross-section for scat-
tering at electrons

A.1 General

To take scattering on bound atomic electrons into
account, the double differential cross-section as function
of the energy transfer W and the momentum transfer g
to a target electron is required, which can be obtained
from the complex dielectric function Im[—1/e(q, W)].
This quantity is usually accessible only for ¢ = 0
which will be called in the following ITm[—1/e(0, W)]
= Im[—1/e(W)] with e(W) = e1(W) 41 e2(W). To esti-
mate Im[—1/¢e(q, W)] from Im[—1/e(0,W)] at ¢ = 0,
which can be measured either by optical or electron
energy-loss spectroscopy (EELS), a theoretical model
is required. For longitudinal excitations the model
described by Ashley [11, and references cited therin] will
be used. This non-relativistic model has been extended
for relativistic energies by interpreting energy loss and
momentum transfer in terms of relativistic quantities
utilizing the papers of Inokuti [28] and Ferndndez-Varea
et al. [12]. The contribution of the transversal cross-
section play a significant role only at low momentum
transfers gag < 0.02 and low energy losses W < 5
keV. It was calculated with the model of Ferndndez-
Varea et al. [12] and added to the longitudinal cross-
section. Eq. (9) of [12] was used with the replacement
e(Q, W) = e1(W) + 1 e2(W), for explanation see para-
graph below Eq. (43) of [12]. After proper shapings the
double differential cross-section reads

d2o.(el)
AW dgag (920, W)
_ 2 1 1
 712mec? neag qag
W — szn (qCLO) -1
I
( W Mlew = Wmm(qao))} +
W (ngaa:(qao) — W2>€2(W) )
[(Winaz(gao)/B)? = W2 e (W)]? + Wes (W)
(46)
with
Wnin(qag) = mec? ( 1+ (agag)? — 1) <W
W < Bamec*qag = Winaz(qag). (47)

The inequalities (47) define the relativistic correct
region in which the double differential cross-section is
defined for a given momentum transfer qag. All calcu-
lations above 30 keV have been done with the Mgller
cross sections. This is justified since well above the K
shell binding energy, i.e. 0.284 keV for C, electrons can
be considered as free. The function Im[—1/e(W)] was
constructed with the parameters from Garcia-Molina et
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Fig. 13 Double differential cross-section according to Eq.
(46) as function of the energy loss W and dimensionless
momentum transfer gao. The kinematical allowed region
lifts out from the gray area. Two dominating features are
the plasmon resonance at W = 34.4 eV and qap = 0.0096,
and the resonance of the transverse excitation at W = 5.2
eV and qao = 0.005

al. [29, Table I], and the Henke tables [30] for W < 30
keV else. Both distributions match at 51.2 eV. The low
energy part of the double differential cross-section, Eq.
(46), is shown in Fig. 13.

The energy differential cross-section is obtained after
integration over the kinematical allowed momentum
transfer gag at a given energy transfer W

qmin(W)aO = VV//BO‘TnfeC2 < qgao

qao < /W (W + 2mec2)/ame02 = Gmaa(W)ao (48)

and reads
‘Imaz(W)
do (e d2o el
= d _— w).
aw 490 9w dqaq (ga0, W)
q=qmin(W)

(49)

This energy differential cross-section has been applied
for an energy loss less than 30 keV while for higher
energies the differential Mgller cross-section [31, Eq.
81.14] was used. Results are shown in Fig. 14. At 30 keV
the cross-section of Eq. (49) overestimates the Mgller
cross-section by 4.2%. For the mean energy loss and the

mean excitation energy one obtains AE(¢) /Az = 728.0
eV/um and I = 88.5 eV, respectively. The former devi-
ates from the above quoted value 737.82 eV/um, Eq.
(21), by only 1.4 %, the latter is close to the currently
accepted value of 89.4 eV [32, Table II]. Similarly, the
differential cross-section as function of the momentum
transfer qap is obtained after integration of Eq. (46)
over the kinematical allowed energy transfer as given
by Eq. (47). Results are shown in Fig. 15.

However, the cross-section is needed as function of
the scattering angle # rather than the momentum trans-
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Fig. 14 Differential cross-section as function of the energy
loss W obtained from Eq. (49). Shown are separately the
contributions of the longitudinal excitation (dashed), the
transverse one (dotted-dashed) and the Mgller cross-section
(dotted)
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Fig. 15 Differential cross-section as function of the

momentum transfer gao obtained after integration of the
double differential cross-section, Eq. (46), over the kine-
matical allowed energy transfer. Shown are separately the
contributions of the longitudinal excitation (dashed), the
transverse one (dotted-dashed) and the Mgller cross-section

(dotted)

fer gag. Unfortunately, it is not possible to relate the
scattering angle 6 uniquely to the momentum transfer
q. It follows from relativistic kinematics that it is also a
function of the energy loss W, see [12, Eq. (111)]. Tak-
ing into account only the first term in the expansion of
[12, Eq. (105)], the following relation has been deduced
for W < E:

4(0, Wag = \/(@231}0(0/2))2 + (ﬂawme@f. (50)

After some algebraic manipulations one obtains for the
double differential cross-section in terms of the scatter-
ing angle 6 and energy loss W
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dQU(el) 0 W) — Bj ’ ; X

Aw o a ) 2mq(0,W)ao
dQU(el)
<t W 51
dWdqao (ga0 )qaoaq(e,w)ao ( )

within the kinematical allowed region

(B7)?sin” @ 2 v—1 2
mln = < 5 e < < A e
Winin(0) = 5 0 Ty amrg™ee SWS —5mee
(52)
. 2W .2
0<sin?f < = sin” Opmaz (W).
<SS O Gt Dme — W) )
(53)

The lefthand side of Eq. (52) and the righthand side of
Eq. (53) follow from kinematics of Mgller scattering.

A.2 The role of resonances

A few remarks will be added on the role of the strong
plasmon resonance seen in Fig. 13. The question may
arise what are possible implications if electrons are
treated as a free gas and Mgller scattering is applied.
Since the Mgller cross-section diverges at zero energy
transfer, a proper low energy cut-off must be chosen. In
case the total electron-electron scattering cross-section
is unknown, one is left with the formidable task how
to get it. Supposing the cross-section 5.576 -10~* A2
would be known, the cut-off energy can be determined
as 4.579 eV. In Fig. 16 the impact on the scattering
distribution is shown. Neglecting the resonances leads
to a broadening of the scattering distribution for small
angles. Although the effect looks quite significant, the
mean transverse energy increases by only 17%. The rea-
son is that the probability density deviates significantly
only at low scattering angles. For an inferred cut-off at
the free atom 2p binding energy of 11.26 eV, the scat-
tering distribution broadens also for rather large angles.

108
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Fig. 16 Normalized electron-electron scattering distribu-
tions for carbon. At the black curve resonances are taken
into account, at the blue only Mgller scattering with a low
energy cut-off energy of 4.579 eV yielding the same cross-
section
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Nevertheless, the mean transverse energy increases also
only by a small amount. The reason is that the effect
of the broadening is compensated by the reduced cross-
section, which is a factor a factor of 2.46 smaller, result-
ing in less collisions per unit path length. However,
the fluctuations of the transverse energy transfer will
increase.

While it appears that the rather complicated treat-
ment of the inelastic electron-electron interaction was
not worth the effort in view of the small effect, this is
not the case for channeling of positrons for which the
positron-electron interaction dominates de-channeling.
The formalism is the same as described here. Only the
Mgller cross-section must be replaced by the Bhabha
one. This will be the subject of a forthcoming paper.

B Derivation of the transverse energy trans-
fer at a collision

In the following it will be explained how Egs. (32) and
(33) come about. The first term of Eq. (32) is simply the
angle as derived from the general relation for the kinetic
energy T ) = pv/2 - ¥2. For the second equation we
refer to Fig. 17. At the step from z; — x4 1 the kinetic
energy changes due to the potential energy difference
U(xy) — U(zg41) as well as due to a possible scattering
by the angle Ad,. A change of the transverse kinetic
energy results from T , = FE|  — U(xg) = pv/2 - 19%
to Ty jy1 = EL g1 — U(xpgr) = Ulzr) — U(zpgr) +
pv/2 - () + Adg)?. Evaluating the latter two equations
for E 41 results in Eq. (33). Special care is required
if the particle is reflected at the potential borders.

C Examples of channeling trajectories

In Fig. 18 typical examples of trajectories are shown
in the (F,,x) plane. The particle was originally cap-
tured in the middle potential pocket. Only three poten-
tial pockets are shown. Large changes of the trans-
verse energy happen essentially only at an overlap with

. 15
w' 10

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Fig. 17 For explanation how Eq. (33) has been derived
in the potential of the (110) plane of diamond. In a step
from xp — w41, indicated by red colour, the scattering
angle may change by A which results in the new energy
E | k+1 according to Eq. (33). In the numerical simulation
the digitization interval is Az = 0.01 A
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Fig. 18 Examples of channeling trajectories

the atomic density at the potential minimum, smaller
ones also outside by collisions with electrons. Panel (a)
shows an example with re-channeling and subsequent
de-channeling. The electron leaves the right potential
pocket to the right. Panel (b) shows an example of a
long channeling history in the primary potential pocket.
The de-channeled electron never re-channels and leaves
the canvas at the maximum energy, indicated by the
second vertical jump.
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