Skip to main content
Log in

Local resonance based precision collimation of THz radiation in a defect containing 1D photonic resonator: spectroscopy and metrology

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A planar photonic resonator containing a unitary defect in the middle of structure can exhibit a system of extraordinary narrow resonance peaks of transmission on the background of perfect reflection. The properties of standing modes inside the polyethylene (polypropylene)/silicon plane resonators in the total intrinsic reflection region and unusual manifestations of THz transmission spectra in centimeter and millimeter wavelength ranges were studied. It is shown that the angle and frequency half-widths of the resonance peaks can be less than 10−9 of the magnitude of angle and frequency depending on the number of periods. This allows one to form collimated beams with divergence measured in fractions of a microdegree. It is shown that a plane resonator containing a central defect transforms the frequency dependent peaks into the outgoing-transmitted beams of various directions like a prism transforms light. This opens the way for precision measurements of angular and frequency distribution of THz radiation. It is proposed to use the existing extremely sharp peaks of transmission in planar resonators containing a central defect for aims of spectroscopy and metrology. A new spectroscopy technique is proposed based on the existing sharp transmission resonances using the concept of accumulating reservoir of electromagnetic field. The high extent of collimation resulting from the usage of photonic resonator gives an opportunity to form long and stable channels of communication in the THz frequency range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analyzed during this study are included in this published article (and its supplementary information files).]”.

References

  1. E. Yablonovitch, Phys. Rev. Let. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Let. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. X.-C. Zhang, J. Xu, Introduction to THz Wave Photonics (Springer, Cham, 2010), pp. 1–262

    Book  Google Scholar 

  4. P. Lova, G. Manfredi, D. Comoretto, Adv. Opt. Mater. 6, 1800730 (2018)

    Article  Google Scholar 

  5. M. Tonouchi, Nat. Photonics 1, 97–105 (2007)

    Article  ADS  Google Scholar 

  6. S.S. Dhillon, M.S. Vitiello, E.H. Linfield et al., J. Phys. D: Appl. Phys. 50, 043001 (2017)

    Article  ADS  Google Scholar 

  7. J. Hesler, R. Prasankumar, J. Tignon, J. Appl. Phys. 126, 110401 (2019)

    Article  ADS  Google Scholar 

  8. C. Kyaw, R. Yahiaoui, Z.A. Chase et al., Optica 7(5), 537–541 (2020)

    Article  ADS  Google Scholar 

  9. X. Shi, Z. Han, Sci. Rep. 7, 13147 (2017)

    Article  ADS  Google Scholar 

  10. F.F. Sizov, Quant. Electr. Optoelectr. 20, 273 (2017)

    Google Scholar 

  11. C.-J. Wu, Z.-H. Wang, Progr. Electromagn. Res. 103, 169–184 (2010)

    Article  Google Scholar 

  12. S. Jena, R.B. Tokas, S. Thakur, D.V. Udupa, Physica E 126, 114477 (2021)

    Article  Google Scholar 

  13. Y.-H. Chang, Y.-Y. Jhu, C.-J. Wu, Opt. Commun. 285, 1501–1504 (2011)

    Article  ADS  Google Scholar 

  14. E.Y. Glushko, Phys. Lett. A 384(23), 126564 (2020)

    Article  MathSciNet  Google Scholar 

  15. E.Y. Glushko, Ukr. Phys. J. 62(11), 945–952 (2017)

    Article  Google Scholar 

  16. E.Y. Glushko, Optik 231, 166502 (2021)

    Article  ADS  Google Scholar 

  17. S.E. Zaki, A. Mehaney, H.M. Hassanein, A.H. Aly, Sci. Rep. 10, 17979 (2020)

    Article  Google Scholar 

  18. E.Y. Glushko, Opt. Commun. 247, 275–280 (2005)

    Article  ADS  Google Scholar 

  19. E.Ya. Glushko, Proc. SPIE 6903, 69030G -69030G-10 (2008)

  20. F. Sanjuan and J.O. Tocho, Latin America Optics and Photonics Conference, paper LT4C.1 (2012).

  21. F. Ramos-Mendieta, P. Halevi, J. Opt. Soc. Am. B 14, 370–381 (1997)

    Article  ADS  Google Scholar 

  22. E.Y. Glushko, Opt. Commun. 285, 3133–3136 (2012)

    Article  Google Scholar 

  23. I.V. Treshin, V.V. Klimov, P.N. Melentiev, V.I. Balykin, Optical Tamm state and extraordinary light transmission through a nanoaperture. Phys. Rev. A 88, 023832 (2013)

    Article  ADS  Google Scholar 

  24. M. Kaliteevski, I. Iorsh, S. Brand, R.A. Abram, J.M. Chamberlain, A.V. Kavokin, I.A. Shelykh, Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 76, 165415 (2007)

    Article  ADS  Google Scholar 

  25. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  26. E.Ya. Glushko, https://archive.org/details/modes-resonances-02. Accessed 21 February 2022.

  27. L.D. Landau, E.M. Lifshitz, Quantum mechanics. Nonrelativistic theory, vol. 3 (Pergamon Press, New York, 1977), pp. 1–342

    Google Scholar 

  28. H. Dakhlaouiab, S. Almansourab, W. Belhadjc, B.M. Wong, Res. Phys. 27, 104505 (2021)

    Google Scholar 

  29. H. Dakhlaouiab, W. Belhadjc, B.M. Wong, Res. Phys. 26, 104403 (2021)

    Google Scholar 

  30. J.A. Briones-Torre, I. Rodriguez-Vargas, Sci. Rep. 7, 16708 (2017)

    Article  ADS  Google Scholar 

  31. G. Li, Mater. Res. Express 5, 055013 (2018)

    Article  ADS  Google Scholar 

  32. E.Y. Glushko, Collimation effect on THz transmission resonances in metalized and defected photonic structures, in Research Trends and Challenges in Physical Science. ed. by S.-H. Dong (BP International, UK, 2021), pp. 83–89

    Chapter  Google Scholar 

  33. L.A. Falkovsky, Resonance Fano in a System of Interacting Electrons and Phonons. Pisma JETP 62, 227–230 (1995)

    Google Scholar 

  34. D.D. Smith, H. Chang, K.A. Fuller, A.T. Rosenberger, R.W. Boyd, Phys. Rev. A 69, 063804 (2004)

    Article  ADS  Google Scholar 

  35. K. Horie, Photochemical hole burning in optical materials. Centen. Meml. Issue Ceram. Soc. Jpn. 99, 912–922 (1991)

    Article  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ya. Glushko.

Ethics declarations

Conflict of interest

The author declares the absence of any conflict or competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (GIF 7202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushko, E.Y. Local resonance based precision collimation of THz radiation in a defect containing 1D photonic resonator: spectroscopy and metrology. Eur. Phys. J. D 76, 130 (2022). https://doi.org/10.1140/epjd/s10053-022-00454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00454-y

Navigation