Skip to main content
Log in

Nonlinear optical properties in GaAs/Al0.3Ga0.7As quantum dots of inversely quadratic Hellmann plus Kratzer potential

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we study in detail the effects of some factors on the optical absorption coefficients (OACs) and refractive index changes (RICs) in spherical quantum dots (QDs) with inversely quadratic Hellmann plus Kratzer potential. Firstly, Schrödinger equation related to confined QDs system is used by Nikiforov–Uvarov method, and the analytical expressions of different energy levels and wave functions are obtained. Then, the OACs and RICs are calculated by using compact density matrix theory and iterative method. Finally, numerical simulation denotes that these factors have an obvious influence on the nonlinear optical characteristics of the system.

Graphical abstract

The matric element \(\left| {M_{21} } \right|\) and energy level interval E21 along with rapid quantum dot radius in situations of several different Limiting potential depths. OACs and RICs along with rapid the photon energy in situations of several different quantum dot radii. OACs and RICs along with rapid the photon energy in situations of several different dissociation energies. OACs and RICs along with rapid the photon energy in situations of several different incident light intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data, models, and code generated or used during the study appear in the submitted article. The corresponding data will be provided when necessary.]

References

  1. F. Ungan, M.K. Bahar, M.G. Barseghyan, L.M. Perez, D. Laroze, Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik 236, 166621 (2021)

    Article  ADS  Google Scholar 

  2. P. Klenovský, D. Hemzal, P. Steindl, M. Zíkova, V. Křápek, J. Humlíček, Polarization anisotropy of the emission from type-II quantum dots. Phys. Rev. B 92(24), 241302 (2015)

    Article  ADS  Google Scholar 

  3. G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot. Curr. Appl. Phys. 11(2), 176–181 (2011)

    Article  ADS  Google Scholar 

  4. Y.Y. Chen, X.L. Feng, C.P. Liu, Generation of Nonlinear Vortex Precursors. Phys. Rev. Lett. 117, 023901 (2016)

    Article  ADS  Google Scholar 

  5. U. Yesilgul, F. Ungan, S. Sakiroglu, E. Kasapoglu, I. Sökmen, Nonlinear optical properties of a semi-exponential quantum wells: effect of high-frequency intense laser field. Optik 185, 311–316 (2019)

    Article  ADS  Google Scholar 

  6. P. Steindl, E.M. Sala, B. Alén, D. Bimberg, P. Klenovský, On the importance of antimony for temporal evolution of emission from self-assembled (InGa)(AsSb)/GaAs quantum dots on GaP (001). New J. Phys. 23(10), 103029 (2021)

    Article  ADS  Google Scholar 

  7. Y.B. Yu, Second-order nonlinear optical effect in an asymmetric quantum well. Appl. Mech. Mater. 389, 1075–1079 (2013)

    Article  Google Scholar 

  8. S. Kwon, J. Park, K. Kim, Y. Cho, M. Lee, Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light Sci. Appl. 11(1), 1–14 (2022)

    Article  Google Scholar 

  9. S. Pal, M. Ghosh, C.A. Duque, Impurity related optical properties in tuned quantum dot/ring systems. Phil. Mag. 99(19), 2457–2486 (2019)

    Article  ADS  Google Scholar 

  10. Q. Zhao, S. Aqiqi, J.F. You, M. Kria, K.X. Guo, E. Feddi, Z.H. Zhang, J.H. Yuan, Influence of position-dependent effective mass on the nonlinear optical properties in AlXGa1−XAs/GaAs single and double triangular quantum wells. Phys. E Low-Dimens. Syst. Nanostruct. 115, 113707 (2020)

    Article  Google Scholar 

  11. H. Huang, D. Csontosová, S. Manna, Y. Huo, R. Trotta, A. Rastelli, P. Klenovský, Electric field induced tuning of electronic correlation in weakly confining quantum dots. Phys. Rev. B 104(16), 165401 (2021)

    Article  ADS  Google Scholar 

  12. R. Khordad, Effect of position-dependent effective mass on linear and nonlinear optical properties in a quantum dot. Indian J. Phys. 86(6), 513–519 (2012)

    Article  ADS  Google Scholar 

  13. X.C. Li, C.B. Ye, J. Gao, B. Wang, Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field. Chin. Phys. B 29(8), 087302 (2020)

    Article  ADS  Google Scholar 

  14. P. Hashemi, M. Servatkhah, R. Pourmand, The effect of rashba spin–orbit interaction on optical far-infrared transition of tuned quantum dot/ring systems. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-03173-7

    Article  Google Scholar 

  15. P. Steindl, E.M. Sala, B. Alén, D.F. Marrón, D. Bimberg, P. Klenovský, Optical response of (InGa)(AsSb)/GaAs quantum dots embedded in a GaP matrix. Phys. Rev. B 100(19), 195407 (2019)

    Article  ADS  Google Scholar 

  16. L.C. Zhang, X.C. Li, X.G. Liu, Z.R. Li, The influence of second-harmonic generation under the external electric field and magnetic field of parabolic quantum dots. Phys. B: Condens. Matter. 618, 413197 (2021)

    Article  Google Scholar 

  17. R.L. Restrepo, E. Kasapoglu, S. Sakiroglu, F. Ungan, A.L. Morales, C.A. Duque, Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields. Infrared Phys. Technol. 85, 147–153 (2017)

    Article  ADS  Google Scholar 

  18. H. Bahramiyan, Strain effect on the third-harmonic generation of a two-dimensional GaAs quantum dot in the presence of magnetic field and spin–orbit interaction. Indian J. Phys. 94(6), 789–796 (2020)

    Article  ADS  Google Scholar 

  19. F. Hackl, M. Grydlik, P. Klenovský, F. Schäffler, T. Fromherz, M. Brehm, Assessing carrier recombination processes in type-II SiGe/Si (001) quantum dots. Ann. Phys. 531(6), 1800259 (2019)

    Article  Google Scholar 

  20. P. Klenovsky, V. Krápek, J. Humlícek. Type-II InAs/GaAsSb/GaAs quantum dots as artificial quantum dot molecules. arXiv preprint https://arxiv.org/abs/1612.03596. (2016)

  21. S. Evangelou, Nonlinear optical rectification of a coupled semiconductor quantum dot–Metallic nanosphere system under a strong electromagnetic field. Phys. B 556, 170–174 (2019)

    Article  ADS  Google Scholar 

  22. D. Csontosová, P. Klenovský, Theory of magneto-optical properties of neutral and charged excitons in GaAs/AlGaAs quantum dots. Phys. Rev. B 102(12), 125412 (2020)

    Article  ADS  Google Scholar 

  23. A. El Aouami, M. Bikerouin, K. Feddi, N. Aghoutane, M. El-Yadri, E. Feddi, F. Dujardin, A. Radu, R.L. Restrepo, J.A. Vinasco, A.L. Morales, C.A. Duque, M.E. Mora-Ramos, Linear and nonlinear optical properties of a single dopant in GaN conical quantum dot with spherical cap. Philos. Mag. 100, 2503 (2020)

    Article  ADS  Google Scholar 

  24. M. Solaimani, H. Moghadam, Effects of interdiffusion and electric field on the optical rectification coefficient of GaAs/AlwGa1−wAs systems: crossover from single to multiple quantum wells. Appl. Phys. A 126(4), 1–9 (2020)

    Article  Google Scholar 

  25. T.A. Sargsian, M.A. Mkrtchyan, H.A. Sarkisyan, D.B. Hayrapetyan, Effects of external electric and magnetic fields on the linear and nonlinear optical properties of InAs cylindrical quantum dot with modified Pöschl-Teller and Morse confinement potentials. Phys. E 126, 114440 (2021)

    Article  Google Scholar 

  26. L. Máthé, C.P. Onyenegecha, A.A. Farcaş, L.M. Pioraş-Ţimbolmaş, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: inversely quadratic Hellmann potential. Phys. Lett. A 397, 127262 (2021)

    Article  MathSciNet  Google Scholar 

  27. K. Batra, V. Prasad, Spherical quantum dot in Kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes. Eur. Phys. J. B 91(12), 1–11 (2018)

    Article  Google Scholar 

  28. C.P. Onyenegecha, K. El Anouz, A.I. Opara, I.J. Njoku, C.J. Okereke, A. El Allati. Nonrelativistic treatment of inversely quadratic Hellmann-Kratzer potential and thermodynamic properties. Heliyon 7(12), e08617 (2021). https://doi.org/10.1016/j.heliyon.2021.e08617

    Article  Google Scholar 

  29. B. Ita, A.I. Ikeuba, Solutions to the Schrödinger equation with inversely quadratic yukawa plus inversely quadratic Hellmann potential using Nikiforov-Uvarov method. J. At. Mol. Phys. 2013, 1–4 (2013)

    Article  Google Scholar 

  30. N.D. Hien, C.A. Duque, E. Feddi, N.V. Hieu, H.D. Trien, L.T.T. Phuong, B.D. Hoi, L.T. Hoa, C.V. Nguyen, N.N. Hieu, Magneto-optical effect in GaAs/GaAlAs semi-parabolic quantum well. Thin Solid Films 682, 10–17 (2019)

    Article  ADS  Google Scholar 

  31. C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48(2), 337–350 (2009)

    Article  Google Scholar 

  32. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Formula method for bound state problems. Few-Body Syst. 56(1), 63–78 (2015)

    Article  ADS  Google Scholar 

  33. L. Stevanović, N. Filipović, V. Pavlović, Effect of magnetic field on absorption coefficients, refractive index changes and group index of spherical quantum dot with hydrogenic impurity. Opt. Mater. 91, 62–69 (2019)

    Article  ADS  Google Scholar 

  34. K. Fellaoui, A. Oueriagli, D. Abouelaoualim, Linear and nonlinear optical absorptions in III–V nitrides quantum well with semi-parabolic confining potential. Indian J. Phys. 93(10), 1353–1357 (2019)

    Article  ADS  Google Scholar 

  35. N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, F. Dujardin, E. El Haouari, C.A. Duque, C.V. Nguyen, H.V. Phuc, Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects. Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-2306-x

    Article  Google Scholar 

  36. E. Ramya, M.V. Rao, D.N. Rao, Third-order nonlinear optical properties of CdSe/ZnS/CdSe core-shell-shell quantum dots. Phys. E 107, 24–29 (2019)

    Article  Google Scholar 

  37. Z.H. Zhang, K.X. Guo, S. Mou, B. Xiao, Y.C. Zhou, Nonlinear optical properties in square tangent quantum wells. Optik 127(2), 928–933 (2016)

    Article  ADS  Google Scholar 

  38. P. Klenovský, J. Valdhans, L. Krejčí, M. Valtr, P. Klapetek, O. Fedotova, Interplay between multipole expansion of exchange interaction and Coulomb correlation of exciton in colloidal II–VI quantum dots. Electron. Struct. 4(1), 015006 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Natural Science Foundation of Anhui Province (No. 1508085QF140) and National Natural Science Foundation of China (Grant Nos. 52174161, 12174161, 51702003, 61775087, and 11674312).

Author information

Authors and Affiliations

Authors

Contributions

CC contributed to software, validation, data processing, and writing—original. XL contributed to data curation, methodology, supervision, reviewing draft, and financial support.

Corresponding author

Correspondence to Xuechao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Li, X. Nonlinear optical properties in GaAs/Al0.3Ga0.7As quantum dots of inversely quadratic Hellmann plus Kratzer potential. Eur. Phys. J. D 76, 134 (2022). https://doi.org/10.1140/epjd/s10053-022-00453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00453-z

Navigation