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Abstract. Quantum engineering now allows to design and construct multi-qubit states in a range of physical
systems. These states are typically quite complex in nature, with disparate, but relevant properties that
include both single and multi-qubit coherences and even entanglement. All these properties can be assessed
by reconstructing the density matrix of those states—but the large parameter space can mean physical
insight of the nature of those states and their coherence can be hard to achieve. Here, we explore how the
Wigner function of a multipartite system and its visualization provides rich information on the nature of
the state, not only at illustrative level but also at the quantitative level. We test our tools in a photonic
architecture making use of the multiple degrees of freedom of two photons.

1 Introduction

We have now entered a quantum technology era [1], in
which the ability to create, manipulate, measure and
characterize quantum states and processes is critical
to improve performance in cryptography, communica-
tion, computing, and metrology. For research purposes,
the reliability of a quantum device is often assessed by
reconstructing either its state or the process it per-
forms by means of quantum tomography [2–10]. This
technique employs a series of measurements on a large
enough number of identically prepared copies of the
quantum system in order to derive the matrix asso-
ciated with either the quantum state or process. This
knowledge is key to access in an experiment all those
quantities that cannot be directly measured, foremost
the type and amount of entanglement [11–14], but this
extends to the entropy [15], and to different signatures
of nonclassicality [16–20]. For small systems and simple
processes, the density and process matrices also pro-
vide some visual help when it comes to inspecting and
comparing them to some reference. This ability, how-
ever, is not easily transposed as the size of the quan-
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tum object grows; in addition, the complex nature of
the off-diagonal elements of the matrices makes their
interpretation even harder them.

As density and process matrices have been intro-
duced as tools for calculations, they do not necessar-
ily represent the best means to visualizing quantum
states. Even for simple systems such as qubits, pro-
cesses are more easily captured by their Bloch sphere
picture. In the quantum optics community, instead,
there have been a number of phase space approaches
that lend themselves naturally to a pictorial repre-
sentations. These include the Glauber–Sudarshan P ,
Husimi Q, and Wigner representations, each enjoying a
number of interesting attributes [21]. They have been
used extensively in the continuous variable (CV) for-
malism [22,23], for which the dimensionality of the
Hilbert space makes the density matrix approach very
limited. In particular, the Wigner function [24] has
been long been employed as the preferred mean for
the phase space representation of quantum states in
optical and microwave fields [25–27]. The preferential
choice for this particular quasi-probability distribution
stems from two main reasons: the marginal distribu-
tions are genuine probability distributions giving infor-
mation about the state being examined [24], and, more
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intriguingly, the presence of regions where the Wigner
function attains negative values is a valid indication of
the so-called quantumness of the state [19], since, in
this case, negative regions cannot occur within the real
probability distribution of our classical world.

Given the usefulness of this approach in the CV
world, it would thus be natural to consider whether
this carries across into discrete variable systems. The
extension of the Wigner functions to discrete variable
systems based on parity operators [28,29] has recently
yielded such a function with all the distinctive features
seen in the continuous variable regime. The number of
arguments of the Wigner function grows with the num-
ber of subsystems, and one has to consider a function
of four variables even for two qubits. The informative
content of the Wigner function would be lost unless one
finds a convenient, compact representation.

In this article, we discuss how a compact represen-
tation can be obtained by using “equal-angle-slicing”,
able to distinguish distinct classes of quantum states.
We apply our method to the analysis of three-qubit
GHZ and W entangled states [13]) generated in a single-
photon based quantum photonics experiment [30]. Our
results demonstrate that the Wigner representation is
as informative for discrete systems, as it is for continu-
ous ones. We thus expect this to become a commonplace
tool, especially in the description of hybrid systems [31–
34] comprising both discrete and continuous parts.

2 Wigner function for qubits

It is important here to provide a brief description of our
Wigner function—especially as it is not defined based
on the canonical X&P quadratures, as seen in most
textbooks. Instead, we will consider the displaced parity
version [28,29,35–39]:

W (Ω) =
1

(π)n
Tr

[
ρD(Ω)ΠD†(Ω)

]
(1)

where D(Ω) and Π are the displacement and parity
operators with Ω being any complete parameterization
of the phase space [40].

These operators are defined by D(Ω) |0〉 = |Ω〉 and
Π |Ω〉 = |−Ω〉, respectively (see Fig. 1). Now, the
Wigner function must display a number of important
features:

• The representation should be unique;
• W (Ω) must be real at all points, and normalized;
• A rotation on the state ρ must be mapped into a

rotation of the phase space parameters;
• ρ should be able to be reconstructed from its asso-

ciated W (Ω), and vice versa;

These properties are ensured by the appropriate choice
of the kernel operator Δ(Ω) ≡ D(Ω)ΠD†(Ω)/πn. This
indeed plays critical role in the mapping of ρ to W (Ω)

Fig. 1 Evaluation of the Wigner function. For the stan-
dard continuous-variable description (left), the Wigner func-
tion can be evaluated as the expectation value of the parity
Π, following a displacement of the state via the operator
D(Ω). For qubits (right), we follow the same strategy: the
Wigner function is now defined as the expectation value of
the extended parity Π[2], following a unitary rotation U [2],
playing the role of the displacement on the Bloch sphere

and back. The form of Δ(Ω) being composed of dis-
placement and parity operators makes the extension
from continuous to discrete variables relatively straight-
forward. One just needs to define the appropriate D(Ω)
and Π in that DV space.

It is easier to start with the equivalent displace-
ment operator. In the continuous variable regime the
action of the displacement operator is D(Ω) |Ξ〉 =
eiΩΞ∗ |Ω + Ξ〉, which effectively translates from one
place in the plane to another. However, the set of pure
states for the qubit live on a sphere rather than plane.
In such a case we can make use of the Euler decompo-
sition of generic single-qubit rotations U [2](θ, φ,Φ) =
eiσzφeiσyθeiσzΦ to obtain a parametrization of the phase
space. The appropriate choice of θ, φ,Φ then allows one
to rotate from one point on the sphere to another, just
like the displacement operation in the CV regime.

The second operation we need is a generalized parity
operator, analogue to the one in the form Π |Ω〉 = |−Ω〉
for the CV regime. For this operator to fulfil the criteria
above, we take Π[2] = 1

2

[
I [2] − √

3σz

]
where σz is the

usual Pauli z operator. This choice enacts a π rotation
on the Bloch sphere of the underlying SU(2) coherent-
state representation [28]; it then finds its motivations in
keeping the definition of the Wigner function consistent
with the one of the related Husimi Q function as the
expectation value of coherent states. [41] We can rewrite
Π[2] explicitly as

Π[2] = −
(√

2 sin( π
12 ) 0

0
√

2 cos( π
12 )

)
σz = Θ · σz (2)

where Θ is the expressed two-dimensional normaliza-
tion matrix that assists in satisfying the features of our
Wigner function based on the given Euler decomposi-
tion. This simplification shows that our extended parity
effectively imparts a normalized π-phase shift to spin
coherent states. Also, it can be shown that the param-
eter Φ gives no contribution, mirroring the fact quan-
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tum states are defined up to a phase. This property is
retained for higher dimensions.

Next, the extension to n qubits can be obtained sim-
ply by using a tensor product [29]:

Δ(Ω) ≡ D(Ω)ΠD†(Ω) =
1
υ

n⊗

i=1

D(Ωi)Π[2]D†(Ωi), (3)

where D(Ωi) ≡ U [2](θi, φi,Φ) and υ is a normalization
constant dependent on Ω. This means we now can cal-
culate the n qubit Wigner function W (θ1, φ1, . . . , θn, φn)
using (1).

3 Slicing the Wigner function

Now that we have a mechanism to construct an n qubit
Wigner function using n pairs of (θ, φ) parameters, it
is obvious that one cannot visualize such large dimen-
sions, thus it would seem that all the advantage of
this pictorial representation would be lost. This is not
unique to DV systems, as in the CV regime we are often
faced with the problem of illustrating the Wigner func-
tion of a multimode system; the adopted solution is to
select opportune “slices” over the phase space where
such representations are able to provide relevant and
valuable information about the system based on physi-
cal considerations. A particularly interesting one is the
“equal-angle” slice that delivers a visualization depend-
ing on only two parameters θ and φ; this is achieved by
setting all θi = θ and φi = φ. This slicing is a natural
fit to the standard Bloch-sphere representation used in
CV, but here the sphere is parametrized by the angles
θ and φ rather than X and P .

As an example, we consider several three qubit
states: namely the GHZ state given by |ΨGHZ〉 =
(|0〉|0〉|0〉 + |1〉|1〉|1〉) /

√
2 and the W state represented

as |ΨW〉 = (|0〉|0〉|1〉 + |0〉|1〉|0〉 + |1〉|0〉|0〉) /
√

3. These
“iconic” states cannot be transformed into each other
by means of local unitary operations, and thus represent
different entanglement classes. In Fig. (2) we plot the
equal angle Wigner function for both the GHZ and W
states. Two immediate observations can be made. First,
both show negative region (blue area) clearly indicat-
ing the quantum nature of those states; classical states,
indeed, cannot possess negative regions. This is how-
ever not surprising as qubits are uniquely quantum by
definition with no classical analog. Further, it is impor-
tant to mention that just because a Wigner function
is completely positive, the state may still exhibit some
form of non-classicality. Second, the advantage of the
Wigner visualization does not stop at helping in recog-
nizing similarities between states. Indeed, in this con-
figuration a procedure known as “Quantum fingerprint-
ing” can be further applied in order to get additional
useful information such as entanglement properties and
quantum state recognition.

(a)

(b)

Fig. 2 Plot of the magnitude of the ideal equal angle
Wigner function of the cluster GHZ a and W b states versus
θ and φ. Here, the red indicates where the Wigner function
is positive while blue where it is negative. The black line
boundary indicates where the Wigner function is zero. It is
clear to see the difference both in structure and in magni-
tude of the two considered states, highlighting their distinc-
tive properties at a glance

4 Generating GHZ and W states

We now turn our attention to simple examples of how
the Wigner function can be used in a real exper-
imental environment. Here, we produce three-qubit
states starting from the two-photon polarization entan-
glement source demonstrated in [42], complemented
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with a path-encoded qubit [30]. Our source consists
of a 1.5-mm barium borate (BBO) crystal, which, by
means of a double-passage arrangement of the pump at
355nm, can produce degenerate polarization-entangled
photon pairs at 710 nm. The state has the form
1√
2

(|H〉1 |H〉2 + |V 〉1 |V 〉2), where the subscripts 1 and
2 refer to the two polarization qubits, with H (V ) indi-
cating the horizontal (vertical) polarization. The third
qubit is added by manipulating the spatial mode of
one of the photons (see Fig. 3) depending on the tar-
get state. This represents the third logical qubit in our
state, while still being associated with a physical prop-
erty of the second photon.

Now, GHZ states are generated using the interferom-
eter depicted in Fig. 3a. Here, photon 2 from the source
is sent through a displaced Sagnac interferometer that
adds an extra degree of freedom in the clockwise or
counterclockwise direction of the loop. A half-waveplate
(HWP) on the anti-clockwise |a〉3 path rotates the
polarization from H to V and vice versa, while a second
HWP on the clockwise path |c〉3 introduces a π phase
shift. Our final state can be written as:

|ψGHZ〉 =
1
2

(|H〉1 |H〉2 |c〉3 − |V 〉1 |V 〉2 |c〉3
+ |H〉1 |V 〉2 |a〉3 + |V 〉1 |H〉2 |a〉3) . (4)

which is a cluster-form GHZ, locally equivalent to the
one defined above

The approach for generating the W state adopts a
similar strategy to the GHZ state, though the setup
is more involved. Starting with the same two-photon
state, photon 2 is now injected in two nested displaced
Sagnac loops, where the path in the first loop serves as
the third qubit as before, while the role of the second
loop is to introduce a polarization-dependent loss, as
shown in Fig. 3b. The circuit generates the state:

|ψW〉 =
1√
3

( |H〉1 |H〉2 |c〉3 + |H〉1 |V 〉2 |a〉3
+ |V 〉1 |H〉2 |a〉3

)
(5)

Concerning our state measurement including our
detection setups, spatial filtering is implemented by
means of single-mode fibres with 5-nm spectral filters
adopted. Measurements are conducted using a standard

Fig. 3 Experimental apparatus for the production of two-photon three-qubit GHZ a and W b states and the reconstructed
density matrices. For both experiments, we start with a two-photon polarization entangled state coming from the source
in [30]. A third qubit is added by manipulating the path of one of the photons inside a displaced Sagnac interferometer.
For the GHZ arrangement (a), the path is correlated to the polarization by using two HWPs. For the W arrangement,
polarization-dependent loss is introduced by nesting a second interferometer, and blocking the |H〉2 |c〉3. Next c, d show
the experimental density matrices for the GHZ state and W states, respectively, reconstructed by means of a maximum
likelihood procedure [3]. The full images show the real parts, while the insets report the imaginary part. The unbalance in
the populations originated in unwanted polarization sensitivity of the beam splitter while loss of coherence can be attributed
to limited visibility in the Sagnac interferometers. These effects led to measured fidelities F ≡ 〈ψ| ρ |ψ〉 = (83.98 ± 0.02)%
for the GHZ state, and F = (81.62 ± 0.04)% for the W state
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tomography approach where for the polarization degree
of freedom we measure the projectors associated with
the Stokes parameters while, for the spatial mode, this
corresponds to measuring the two outputs of the Sagnac
interferometers with different relative phases between
the clockwise and anticlockwise paths. For both states,
we have collected a set of informationally complete mea-
surements that allow us to reconstruct the expressions
for the experimental density matrices ρGHZ, and ρW,
respectively, as the output of a maximum likelihood
routine. The experimental matrices are shown in Fig. 3
(c),(d) and at a glance shows that our experimental
states suffer from unbalance in the populations, and
from a lack of purity. However, it is hard to easily deter-
mine by visual inspection the class of the state gener-
ated or how the correlations among the qubits will be
affected.

5 Experimental sliced Wigner functions

The Wigner function will provide a natural way to
explore these two experimentally realized states. It is
important to mention again that our GHZ we generated
is not the typical one of the form |ΨGHZ〉 but instead the
cluster state variant (local operations obviously trans-
form one to the other). In Fig. (4) we plot both the
reconstructed cluster GHZ and W states alongside their
ideal states for comparison.

It is immediately clear that in this equal angle slice,
the Wigner function of the typical GHZ state and the
cluster GHZ state appear different even though the
cluster GHZ state is related to usual GHZ state by
|ψGHZ〉 = P1P2P

†
3 H1H2H3 |ΨGHZ〉, where Pi and Hi

are the usual phase and Hadamard gates acting on the
i-th qubit. Second, our agreement between the ideal and
reconstructed Wigner function is quite remarkable even
though we have mentioned issues associated with exper-
imental imperfections and noise. There are of course
differences but the overall similarities are clear.

The effect of imperfections is generally that of
smoothing features and disrupting symmetries. An
example of the first instance is visible for GHZ states:
the oscillations in Fig. 4a exhibit a pattern which is less
pronounced that in its theoretical counterpart, Fig. 4c.
For W states, instead, the expected symmetry in φ is
manifestly broken, as the comparison between Fig. 4b
and d is shown. It is interesting to remark how imper-
fections tend to make the experimental GHZ more sym-
metric in φ, introducing a hint of a W-like behaviour;
conversely, the experimental W state starts displaying
some oscillations proper to the GHZ state.

It is interesting to explore the effect of noise on the
negative nature of these Wigner functions. It is imme-
diately clear that the depth of our negative regions has
decreased due to noise and imperfections. The interest-
ing question is what happens as the amount of noise
increases. The depth of the negative region in both the
GHZ and W states keeps decreasing until we reach a
critical point at which it completely disappears in the

sliced section of this Wigner function. This critical point
occurs near the separability point of our states and so
is a useful tool to explore the “quantumness” of these
discrete variable states. We must remember that how-
ever that the separable system may still be “quantum”
due to it qubit substructure and so show negativity.

It is now worthwhile to return to this concept of fin-
gerprinting of quantum states outlining how it could
work. Figure 4 clearly shows that with this equal angle
slide that the states look quite different in that repre-
sentation. They can thus be used to potentially distin-
guish them and potentially establish which state they
arose from. It is useful at this stage to explore a number
of different equal angle slices given by θ, φ for both of
cluster GHZ and W states; these are obtained by apply-
ing a local unitary to one of the qubit. The results are
shown in appendix (A) and clearly indicate that several
of the GHZ and W slides look the same. However, there
are slices where the patterns are quite different which
can be used to distinguish them. This highlights they
may be useful in fingerprinting those state. Finally, we
need to consider that the traditional and cluster GHZ
states look quite different in the original slice we pre-
sented.

6 Discussion and conclusion

To summarize, we have shown how the sliced qubit-
based Wigner function is a useful visual tool for distin-
guishing different types of quantum states. Further, the
presence of negative regions in the sliced Wigner func-
tion is a clear signature of “quantumness”. While such
“quantumness” is usual in qubit-based system, our slic-
ing technique may provide a simple way to distinguish
mixed entangled states from their separable counter-
parts.

While providing a conclusive methodology for distin-
guishing high-dimensional quantum states based on our
Wigner representation will be left for future works, it
is worth mentioning the strength of this approach. In
Figs. 3 and 4 we showed that given a specific equal-angle
slicing we are able to distinguish between GHZ and W
form, including their cluster variant. In higher dimen-
sion, the classification of the states becomes rapidly
more complex due to the richness of their inner quan-
tum correlations. What we propose is to take “snap-
shots” of different equal-slicing angles (as shown for
example for the simple cases considered in this arti-
cle in the figure in the appendix), providing a set of
fingerprints of the quantum state. The characteristics
of each of those snapshots overall provide the complete
information about the state, thus allowing to identify
it even without previous knowledge on the state itself.
Even more, we envision that image recognition algo-
rithms will be able to provide an automatic machine-
learning enhanced classification of those states given
the topological properties of the fingerprinting.
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(a) (b)

(c) (d)

Fig. 4 Plot of the magnitude of the equal angle Wigner function reconstructed from experimental data of the cluster GHZ
a and W b states versus θ and φ. Here, the red indicates where the Wigner function is positive while blue where it is
negative. Further, white represent the boundary where the Wigner function is near zero with the black line(s) indicated
where the Wigner function is exactly zero. Next the Wigner functions for the ideal cluster GHZ c and W d states are shown
for comparison. The colour scaling is the same as in Fig. 2
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Fig. 5 Equal angle Wigner function slices of a the GHZ,
b cluster GHZ and c W states against θ (y-axis) and φ
(x-axis). Each subfigure is arranged as a 4x3 set of images
where either a Ii, Xi, Yi or Zi rotation is applied to the i-th
qubit before the equal angle Wigner function is calculated.
Each row corresponds to a different rotated qubit i ranging
from 1 to 3. For symmetric states under permutation of the
qubits (GHZ and W states), the images in the different rows
are identical as expected

the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Fingerprints

In this appendix, we graphically present in Fig. 5 a
number of equal angle slices for both GHZ, cluster GHZ
and W states. It is clear that many of these images are
unique to the state that originated them.
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