Skip to main content
Log in

Influence of equivalent resistance on the simulation of self-pulsing discharge by using a circuit model

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Self-pulsing phenomena are obtained in plane–plane discharge, and a circuit model is built to simulate the self-pulse. The discharge cell is modeled as a capacitor in parallel with an equivalent resistor. In this model, two forms of equivalent resistance are used to simulate the self-pulse. In the first method, a higher resistance value and a lower resistance value are used when the capacitor charges and discharges, respectively. In the second method, the value of the equivalent resistor is calculated from experimental data and is a function of the time. Results show that the equivalent resistor has an important influence on the simulated self-pulses. Compared with the simulated results by using the first method, when the equivalent resistance is set to change with time t, the simulated waveforms of discharge current and voltage are more consistent with those obtained in experiments at different average discharge currents. By using the second method, the maximum and minimum voltages obtained using the model agree with the experimental data within 1.1%, whereas the differences between peak current values are less than 0.1%. The simulated waveforms by using the second method also present a gentle falling edge of the discharge current, which is much similar to that in the experiment. The relationship between discharge currents from different devices in the circuit is also discussed. The results show that currents across the measured resistor and the ballast resistor are not equal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: Data underlying the results presented in this manuscript are available from the authors upon reasonable request.].

References

  1. A. Kumar, N. Skoro, W. Gernjak, N. Puac, Eur. Phys. J. D. 75, 283 (2021)

    Article  ADS  Google Scholar 

  2. M. Simek, T. Homola, Eur. Phys. J. D. 75, 210 (2021)

    Article  ADS  Google Scholar 

  3. D.M. Goebel, G. Becatti, I.G. Mikellides, A.L. Ortega, J. Appl. Phys. 130, 050902 (2021)

    Article  ADS  Google Scholar 

  4. Y. Qin, K. Xie, Y. Zhang, J.T. Ouyang, Phys. Plasmas. 23, 023501 (2016)

    Article  ADS  Google Scholar 

  5. C. Lazzaroni, P. Chabert, J. Appl. Phys. 111, 053305 (2012)

    Article  ADS  Google Scholar 

  6. C. Lazzaroni, P. Chabert, A. Rousseau, N. Sadeghi, Eur. Phys. J. D. 60, 555 (2010)

    Article  ADS  Google Scholar 

  7. T. Kuschel, B. Niermann, M. Stefanović, M. Böke, N. Škoro, D. Marić, Z.L. Petrović, J. Winter, Plasma Sources Sci. Technol 20, 065001 (2011)

    Article  ADS  Google Scholar 

  8. V. Kolobov, A.I. Fiala, Phys. Rev. E. 50, 3018 (1194)

    Article  Google Scholar 

  9. R. Mahamud, T.I. Farouk, J. Phys. D. 49, 145202 (2016)

    Article  ADS  Google Scholar 

  10. C. Wang, X. Chen, K. Tang, P.F. Li, Plasma Sci. Technol. 21, 055402 (2019)

    Article  ADS  Google Scholar 

  11. E. Defoort, R. Bellanger, C. Batiot-Dupeyrat, E. Moreau, J. Phys. D 53, 175202 (2020)

    Article  ADS  Google Scholar 

  12. Y. Zhang, Q. Xia, Z.R. Jiang, J.T. Ouyang, Sci. Rep. 7, 1078 (2017)

    Article  Google Scholar 

  13. R.L. Cui, F. He, J.S. Miao, J.T. Ouyang, Phys. Plasmas 24, 103524 (2017)

    Article  ADS  Google Scholar 

  14. K. Liu, C.Y. Wang, J.Z. Lei, H.M. Hu, P.C. Zheng, W. He, Eur. Phys. J. D. 70, 71 (2016)

    Article  ADS  Google Scholar 

  15. R.R. Arslanbekov, V.I. Kolobov, J. Phys. D. 36, 2986 (2003)

    Article  ADS  Google Scholar 

  16. M.S. Mokrov, Y.P. Raizer, Plasma Sources Sci. Technol. 17, 035031 (2008)

    Article  ADS  Google Scholar 

  17. Z.L. Petrović, A.V. Phelps, Phys. Rev. E 47, 2806 (1993)

    Article  ADS  Google Scholar 

  18. D.H. Hsu, D.B. Graves, J. Phys. D. 36, 2898 (2003)

    Article  ADS  Google Scholar 

  19. X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech, A. Rousseau, Plasma Sources Sci. Technol. 16, 23 (2007)

    Article  ADS  Google Scholar 

  20. Y. Qin, F. He, X.X. Jiang, K. Xie, J.T. Ouyang, Phys. Plasmas. 21, 073501 (2014)

    Article  ADS  Google Scholar 

  21. B.L. Du, S. Mohr, D. Luggenhölscher, U. Czarnetzki, J. Phys. D. 44, 125204 (2011)

    Article  ADS  Google Scholar 

  22. A.V. Phelps, Z.L. Petrovic, B.M. Jelenkovic, Phys. Rev. E. 47, 2825 (1993)

    Article  ADS  Google Scholar 

  23. P. Chabert, C. Lazzaroni, A. Rousseau, J. Appl. Phys. 108, 113307 (2010)

    Article  ADS  Google Scholar 

  24. Q. Xia, Q.Y. Zhang, F. He, Y. Qin, Z.R. Jiang, J.T. Ouyang, Phys. Plasma 25, 023506 (2018)

    Article  ADS  Google Scholar 

  25. O. Taylan, H. Berberoglu, J. Appl. Phys. 116, 043302 (2014)

    Article  ADS  Google Scholar 

  26. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (Taylor and Francis Group, London, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant No. 51777051), and the Science Foundation of in Hebei province (Grant No. E2021201037), the Science and Technology Research Projects of Colleges and Universities in Hebei Province (Grant No. ZD2020197), and the excellent scientific research transformation and innovation project of Hebei University.

Author information

Authors and Affiliations

Authors

Contributions

S.H and Q.L conceptualized the experimental idea and design. J.L, Y.Q, and J.Z performed the experiment and simulation. S.H, J.L, Q.L, and L.D analyzed the results and prepared the original draft of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Shoujie He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Li, J., Qiao, Y. et al. Influence of equivalent resistance on the simulation of self-pulsing discharge by using a circuit model. Eur. Phys. J. D 76, 99 (2022). https://doi.org/10.1140/epjd/s10053-022-00415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00415-5

Navigation