Skip to main content
Log in

Relativistic atomic structure calculations and evaluation of plasma parameters in Be-like ions for its possible use in laboratory plasma diagnostic studies

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have performed atomic structure calculations of Be-like C, N, O and Ne ions using systematically enlarged multiconfiguration Dirac–Fock wavefunctions. Present calculations are fully relativistic in nature with Breit interaction and quantum electrodynamic (QED) corrections such as vacuum polarization and self-energy correction to obtain low lying energy levels, transition probability, oscillator strength and line strength. Selective radiative data for electric dipole, magnetic quadrupole and fine structure data in terms of hyperfine coupling constants and isotopic shift parameters are also reported. Comparisons are made with the existing available results and a good agreement has been found. Additionally, an attempt is made to study the impact of relativistic and QED corrections on forbidden and allowed transitions. We have also used the above-computed transition probabilities here to provide the line intensity ratio and plasma parameters of optically thin and moderately dense plasma. We believe that the detailed atomic data computed here will be further helpful in line identification and plasma modeling studies for laboratory plasma devices like ITER and astrophysical plasma work related to elemental abundance calculations from solar corona to active galactic nuclei.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data presented here is new and complete to address the problem in the manuscript.]

References

  1. E. Hinnov, Phys. Rev. A 14, 1533 (1976)

    Article  ADS  Google Scholar 

  2. P. Beiersdorfer, J. Clementson, J. Dunn, M. Gu, K. Morris, Y. Podpaly, E. Wang, M. Bitter, R. Feder, K. Hill et al., J. Phys. B: At. Mol. Opt. Phys. 43, 144008 (2010)

    Article  ADS  Google Scholar 

  3. C. De Michelis, M. Mattioli, Nucl. Fusion 21, 677 (1981)

    Article  ADS  Google Scholar 

  4. N.J. Peacock, Astrophysical and Laboratory Plasmas (Springer, Berlin, 1996), pp. 341–399

    Book  Google Scholar 

  5. A. Gabriel, Mon. Not. R. Astron. Soc. 145, 241 (1969)

    Article  ADS  Google Scholar 

  6. A. Pradhan, Astrophys. J. 263, 477 (1982)

    Article  ADS  Google Scholar 

  7. D. Porquet, J. Dubau, Astron. Astrophys. Suppl. Ser. 143, 495 (2000)

    Article  ADS  Google Scholar 

  8. F. Keenan, W. Feibelman, K. Berrington, Astrophys. J. 389, 443 (1992)

    Article  ADS  Google Scholar 

  9. B. Saha, S. Fritzsche, J. Phys. B: At. Mol. Opt. Phys. 40, 259 (2007)

    Article  ADS  Google Scholar 

  10. T. Brage, P.G. Judge, A. Aboussaïd, M.R. Godefroid, P. Jönsson, A. Ynnerman, C.F. Fischer, D.S. Leckrone, Astrophys. J. 500, 507 (1998)

    Article  ADS  Google Scholar 

  11. T. Brage, P.G. Judge, C.R. Proffitt, Phys. Rev. Lett. 89, 281101 (2002)

    Article  ADS  Google Scholar 

  12. B.B. Birkett, J.-P. Briand, P. Charles, D.D. Dietrich, K. Finlayson, P. Indelicato, D. Liesen, R. Marrus, A. Simionovici, Phys. Rev. A 47, R2454 (1993)

    Article  ADS  Google Scholar 

  13. S. Fritzsche, A. Surzhykov, A. Volotka, New J. Phys. 17, 103009 (2015)

    Article  ADS  Google Scholar 

  14. V. Kaufman, W.C. Martin, J. Phys. Chem. Ref. Data 20, 775 (1991)

    Article  ADS  Google Scholar 

  15. R.L. Kelly, J. Phys. Chem. Ref. Data 16, 1 (1987)

    Article  Google Scholar 

  16. G. Brown, P. Beiersdorfer, D. Liedahl, K. Widmann, S. Kahn, Astrophys. J. 502, 1015 (1998)

    Article  ADS  Google Scholar 

  17. G. Brown, P. Beiersdorfer, D. Liedahl, K. Widmann, S. Kahn, E. Clothiaux, Astrophys. J. Suppl. Ser. 140, 589 (2002)

    Article  ADS  Google Scholar 

  18. C. Brown, U. Feldman, J. Seely, C. Korendyke, H. Hara, Astrophys. J. Suppl. Ser. 176, 511 (2008)

    Article  ADS  Google Scholar 

  19. T. Shirai, J. Sugar, A. Musgrove, W. Wisese, Monograph 8, 1 (2000)

    ADS  Google Scholar 

  20. E. Landi, U. Feldman, K. Dere, Astrophys. J. Suppl. Ser. 139, 281 (2002)

    Article  ADS  Google Scholar 

  21. E. Landi, K. Phillips, Astrophys. J. Suppl. Ser. 160, 286 (2005)

    Article  ADS  Google Scholar 

  22. W. Curdt, E. Landi, U. Feldman, Astron. Astrophys. 427, 1045 (2004)

    Article  ADS  Google Scholar 

  23. K. Werner, T. Rauch, E. Reiff, J. Kruk, R. Napiwotzki, Astron. Astrophys. 427, 685 (2004)

    Article  ADS  Google Scholar 

  24. G. Del Zanna, Astron. Astrophys. 481, L69 (2008)

    Article  ADS  Google Scholar 

  25. G. Del Zanna, T. Woods, Astron. Astrophys. 555, A59 (2013)

    Article  Google Scholar 

  26. A. Kramida, M.-C. Buchet-Poulizac, Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 38, 265 (2006)

    Google Scholar 

  27. J. Doerfert, E. Träbert, A. Wolf, Hyperfine Interact. 99, 155 (1996)

    Article  ADS  Google Scholar 

  28. T. Nandi, N. Bhattacharya, M. Kurup, K. Prasad, Phys. Scr. 54, 179 (1996)

    Article  ADS  Google Scholar 

  29. T. Nandi, P. Marketos, N. Bhattacharya, S. Mitra, J. Phys. B: At. Mol. Opt. Phys. 32, 769 (1999)

    Article  ADS  Google Scholar 

  30. P. Marketos, T. Nandi, Z. Phys. D Atoms Mol. Clust. 42, 237 (1997)

    Article  Google Scholar 

  31. H. Pfennig, R. Steele, E. Trefftz, J. Quant. Spectrosc. Radiat. Transf. 5, 335 (1965)

    Article  ADS  Google Scholar 

  32. C.F. Fischer, G. Tachiev, At. Data Nucl. Data Tables 87, 1 (2004)

    Article  ADS  Google Scholar 

  33. W. Li, A. Amarsi, A. Papoulia, J. Ekman, P. Jönsson, Mon. Not. R. Astron. Soc. 502, 3780 (2021)

    Article  ADS  Google Scholar 

  34. W. Li, P. Rynkun, L. Radžiūtė, G. Gaigalas, B. Atalay, A. Papoulia, K. Wang, H. Hartman, J. Ekman, T. Brage et al., Astron. Astrophys. 639, A25 (2020)

    Article  ADS  Google Scholar 

  35. K. Wang, Z.B. Chen, C.Y. Zhang, R. Si, P. Jönsson, H. Hartman, M.F. Gu, C.Y. Chen, J. Yan, Astrophys. J. Suppl. Ser. 234, 40 (2018)

    Article  ADS  Google Scholar 

  36. K. Cheng, Y.-K. Kim, J. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979)

    Article  ADS  Google Scholar 

  37. P. Jönsson, C.F. Fischer, E. Träbert, J. Phys. B: At. Mol. Opt. Phys. 31, 3497 (1998)

    Article  ADS  Google Scholar 

  38. H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 52, 143 (1992)

    Article  ADS  Google Scholar 

  39. M.Y. Kaygorodov, Y.S. Kozhedub, I.I. Tupitsyn, A.V. Malyshev, D.A. Glazov, G. Plunien, V.M. Shabaev, Phys. Rev. A 99, 032505 (2019)

    Article  ADS  Google Scholar 

  40. M. Safronova, W. Johnson, U. Safronova, Phys. Rev. A 53, 4036 (1996)

    Article  ADS  Google Scholar 

  41. U. Safronova, W. Johnson, A. Derevianko, Phys. Scr. 60, 46 (1999)

    Article  ADS  Google Scholar 

  42. M. Gu, At. Data Nucl. Data Tables 89, 267 (2005)

    Article  ADS  Google Scholar 

  43. G. Tachiev, C.F. Fischer, J. Phys. B: At. Mol. Opt. Phys. 32, 5805 (1999)

    Article  ADS  Google Scholar 

  44. A. Kingston, A. Hibbert, J. Phys. B: At. Mol. Opt. Phys. 33, 693 (2000)

    Article  ADS  Google Scholar 

  45. A. Kingston, A. Hibbert, J. Phys. B: At. Mol. Opt. Phys. 34, 81 (2001)

    Article  ADS  Google Scholar 

  46. K. Cheng, M. Chen, W. Johnson et al., Phys. Rev. A 77, 052504 (2008)

    Article  ADS  Google Scholar 

  47. P. Jönsson, G. Gaigalas, J. Bieroń, C.F. Fischer, I. Grant, Comput. Phys. Commun. 184, 2197 (2013)

    Article  ADS  Google Scholar 

  48. P. Jönsson, X. He, Comput. Phys. Commun. 177, 597 (2007)

    Article  ADS  Google Scholar 

  49. F. Parpia, Comput. Phys. Commun. 94, 249 (1996)

    Article  ADS  Google Scholar 

  50. I. Grant, Comput. Phys. Commun. 21, 207 (1980)

    Article  ADS  Google Scholar 

  51. I.P. Grant, Relativistic atomic structure calculations, in Methods in Computational Chemistry. ed. by S. Wilson (Springer, Boston, MA, 1988)

    Google Scholar 

  52. W.R. Johnson, Atomic Structure Theory (Springer, Berlin, 2007)

    Google Scholar 

  53. G. Breit, Phys. Rev. 39, 616 (1932)

    Article  ADS  Google Scholar 

  54. G. Singh, N.K. Puri, J. Phys. B: At. Mol. Opt. Phys. 49, 205002 (2016)

    Article  ADS  Google Scholar 

  55. G. Singh, A. Singh, T. Nandi, Radiat. Phys. Chem. 172, 108866 (2020)

    Article  Google Scholar 

  56. M. Chen, K. Cheng, J. Phys. B: At. Mol. Opt. Phys. 43, 074019 (2010)

    Article  ADS  Google Scholar 

  57. B. McKenzie, Comput. Phys. Commun. 21, 233 (1980)

    Article  ADS  Google Scholar 

  58. K. Cheng, M. Chen, W. Johnson, J. Sapirstein, Can. J. Phys. 86, 33 (2008)

    Article  ADS  Google Scholar 

  59. J.J. Sakurai, Advanced Quantum Mechanics (Pearson Education India, Delhi, 1967)

    Google Scholar 

  60. P.J. Mohr, Ann. Phys. 88, 26 (1974)

    Article  ADS  Google Scholar 

  61. P.J. Mohr, G. Plunien, G. Soff, Phys. Rep. 293, 227 (1998)

    Article  ADS  Google Scholar 

  62. W. Lamb, Phys. Rev. 72, 241 (1947)

    Article  ADS  Google Scholar 

  63. T.A. Welton, Phys. Rev. 74, 1157 (1948)

    Article  ADS  Google Scholar 

  64. P. Indelicato, O. Gorveix, J.-P. Desclaux, J. Phys. B: At. Mol. Phys. 20, 651 (1987)

    Article  ADS  Google Scholar 

  65. P. Indelicato, J. Desclaux, Phys. Rev. A 42, 5139 (1990)

    Article  ADS  Google Scholar 

  66. P. Indelicato, P.J. Mohr, Phys. Rev. A 63, 052507 (2001)

    Article  ADS  Google Scholar 

  67. P. Indelicato, J.P. Santos, S. Boucard, J.-P. Desclaux, Eur. Phys. J. D 45, 155 (2007)

    Article  ADS  Google Scholar 

  68. V. Yerokhin, V. Shabaev, Phys. Rev. A 60, 800 (1999)

    Article  ADS  Google Scholar 

  69. E.A. Uehling, Phys. Rev. 48, 55 (1935)

    Article  ADS  Google Scholar 

  70. V. Flambaum, J. Ginges, Phys. Rev. A 72, 052115 (2005)

    Article  ADS  Google Scholar 

  71. I. Tupitsyn, V. Shabaev, J.C. López-Urrutia, I. Draganić, R.S. Orts, J. Ullrich, Phys. Rev. A 68, 022511 (2003)

    Article  ADS  Google Scholar 

  72. V.M. Shabaev, Theor. Math. Phys. 63, 588 (1985)

    Article  Google Scholar 

  73. V. Shabaev, A. Artemyev, J. Phys. B: At. Mol. Opt. Phys. 27, 1307 (1994)

    Article  ADS  Google Scholar 

  74. C. Naze, E. Gaidamauskas, G. Gaigalas, M. Godefroid, P. Jönsson, Comput. Phys. Commun. 184, 2187 (2013)

    Article  ADS  Google Scholar 

  75. P. Jönsson, C.F. Fischer, Comput. Phys. Commun. 100, 81 (1997)

  76. J. Berengut, V. Dzuba, V. Flambaum, Phys. Rev. A 68, 022502 (2003)

    Article  ADS  Google Scholar 

  77. C.F. Fischer, Phys. Scr. 2009, 014019 (2009)

    Article  Google Scholar 

  78. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team. NIST Atomic Spectra Database (ver. 5.6.1) [Online]. https://physics.nist.gov/asd [2019, September 11]. National Institute of Standards and Technology, Gaithersburg, MD (2018)

  79. R. Glass, Astrophys. Space Sci. 87, 41 (1982)

    Article  ADS  Google Scholar 

  80. H. Nussbaumer, P. Storey, Astron. Astrophys. 64, 139 (1978)

    ADS  Google Scholar 

  81. A. Kingston, A. Hibbert, Phys. Scr. 64, 58 (2001)

    Article  ADS  Google Scholar 

  82. J. Reader, A. Kramida, Y. Ralchenko, W. Wiese, J. Fuhr, in Journal of Physics: Conference Series (vol. 576, 2015)

  83. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  84. R.L. Kurucz, Phys. Scr. 1993, 110 (1993)

    Article  Google Scholar 

  85. V. Boiko, A.Y. Faenov, S. Pikuz, J. Quant. Spectrosc. Radiat. Transf. 19, 11 (1978)

  86. C. Aragón, J.A. Aguilera, Spectrochim. Acta Part B 63, 893 (2008)

    Article  ADS  Google Scholar 

  87. M. Adamson, A. Padmanabhan, G. Godfrey, S. Rehse, Spectrochim. Acta Part B 62, 1348 (2007)

    Article  ADS  Google Scholar 

  88. H. Drawin, P. Felenbok, Z. Astrophys. 63, 62 (1965)

    ADS  Google Scholar 

  89. R.W.P. McWhirter, Plasma Diagnostic Techniques Pure and Applied Physics (Academic Press, New York, 1965), pp. 201–264

    Google Scholar 

Download references

Acknowledgements

We are grateful to library, laboratory staff and research community of Inter University Accelerator Center, New Delhi, for meaningful discussions during the work.

Author information

Authors and Affiliations

Authors

Contributions

GS: Conceptualization, Investigation, Software, Data curation, Writing original draft. AKS: Resources, Project administration. TN: Supervision, Validation and editing.

Corresponding author

Correspondence to Gajendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, A.K. & Nandi, T. Relativistic atomic structure calculations and evaluation of plasma parameters in Be-like ions for its possible use in laboratory plasma diagnostic studies. Eur. Phys. J. D 76, 62 (2022). https://doi.org/10.1140/epjd/s10053-022-00387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00387-6

Navigation