Skip to main content
Log in

Effectively single high-order mode guidance based on selective mode filtering

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Compared with the fundamental mode in the optical fibers, the higher-order modes with unique dispersion characteristics give the radiation generated by nonlinearity a wider bandwidth. On this basis, a design scheme of single-mode operation in a few-mode optical fiber is proposed. All the core modes except the LP02 mode will be filtered out by introducing two microstructure cladding regions that are strongly coupled to the core modes with different refractive indexes. The simulation results show that the loss of the LP02 mode is less than 0.1 dB/m in the bandwidth greater than 20 nm, while the losses of other modes are greater than 10 dB/m, indicating that the fiber achieves effective transmission of a single high-order mode. This work broadens the concept of selective mode filtering design and may attract more researchers’ attention to single high-order mode fiber applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

“This manuscript has no associated data or the data will not be deposited. [Authors’ comment: If readers need, they can consult the corresponding author for detailed data]”.

References

  1. P.J. Winzer, Scaling optical fiber networks: challenges and solutions[J]. Opt. Photonics News 26(3), 28–35 (2015)

    Article  Google Scholar 

  2. H. Mellah, X. Zhang, D. Shen, Mode multiplexers/demultiplexers for space division multiplexed optical fiber communications. In [Invited] International Conference on Optical Communications and Networks (ICOCN’15), 2015.

  3. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, K. Nakajima, Few-mode fiber technology for mode division multiplexing, Opt. Fiber Technol. (2017).

  4. Li X, Wang X, Zheng H, et al. A novel few mode fiber with low loss and low crosstalk[M]. 2018.

  5. H. Wu, M. Tang, M. Wang, C. Zhao, D. Liu, Few-mode optical fiber based simultaneously distributed curvature and temperature sensing. Opt. Express 25(11), 12722–12732 (2017)

    Article  ADS  Google Scholar 

  6. M. Aliramezani, S.M. Nejad, Numerical analysis and optimization of a dual-concentric-core photonic crystal fiber for broadband dispersion compensation. Opt. Laser Technol. 42(8), 1209–1217 (2010)

    Article  ADS  Google Scholar 

  7. S. Ramachandran, Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. J. Lightwave Technol. 23(11), 3426–3443 (2005)

    Article  ADS  Google Scholar 

  8. F. Begum, Y. Namihira, S.M.A. Razzak, S. Kaijage, N.H. Hai, T. Kinjo, K. Miyagi, N. Zou, Novel broadband dispersion compensating photonic crystal fibers: applications in high-speed transmission systems. Opt. Laser Technol. 41(6), 679–686 (2009)

    Article  ADS  Google Scholar 

  9. S. Ramachandran, J.M. Fini, M. Mermelstein, J.W. Nicholson, S. Ghalmi, Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers. Laser Photonics Rev. 2(6), 429–448 (2008)

    Article  ADS  Google Scholar 

  10. G.-D. Cao, Q. Wang, X. Yan, M.-Y. Chen, Investigation on adiabatic mode evolution in a few-mode optical waveguide, Applied Physics B 124 (2018) 88

  11. Y. Sheng, J. Wei, N.-F. Ren, M.-Y. Chen, Design and optimization of fundamental mode filters based on long-period fiber gratings. Opt. Fiber Technol. 30, 89–94 (2016)

    Article  ADS  Google Scholar 

  12. J.W. Nicholson, J.M. Fini, A.M. DeSantolo, X. Liu, K. Feder, P.S. Westbrook, V.R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers. Opt. Express 20(22), 24575 (2012)

    Article  ADS  Google Scholar 

  13. J.W. Nicholson, J.M. Fini, X. Liu, A.M. Desantolo, D.J. Digiovanni, Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output, CLEO: Science and Innovations, 2013.

  14. R. Ikeda, Y. Oda, T. Kobayashi, et al. Development of 170GHz, 1MW gyrotron with high-order TE 31,11 mode oscillation for ITER EC system[J]. Fusion Eng. Design, 2018, 128(MAR.): 23–27

  15. Congcong, X. Song, et al. Fault detection of few-mode fiber based on high-order mode with high fault detection sensitivity[J]. Optics letters, 44(18): 4487–4490.

  16. R. Huang, J. Wei, M.-Y. Chen, Q. Xiang, Design of a mode-field converter based on a two-core optical fiber with a long-period fiber grating. Opt. Eng. 55, 066110 (2016)

    Article  ADS  Google Scholar 

  17. H. Sakata, H. Sano, T. Harada, Tunable mode converter using electromagnet-induced long-period grating in two-mode fiber. Opt. Fiber Technol. 20(3), 224–227 (2014)

    Article  ADS  Google Scholar 

  18. X. Zhang, Y. Liu, Z. Wang, J. Yu, H. Zhang, LP 01 -LP 11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber. Opt. Express 26(6), 7013 (2018)

    Article  ADS  Google Scholar 

  19. N. Kejalakshmy, B.M.A. Rahman, A. Agrawal, T. Wongcharoen, K.T.V. Grattan, Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method. Appl. Phys. B: Lasers Opt. 93(1), 223–230 (2008)

    Article  ADS  Google Scholar 

  20. M.Y. Chen, Y.-R. Li, J. Zhou, Y.-K. Zhang, Design of asymmetric large-mode area optical fiber with low-bending loss. J. Lightwave Technol. 31(3), 476–481 (2013)

    Article  ADS  Google Scholar 

  21. J.M. Fini, Bend-compensated design of large-mode-area fibers. Opt. Lett. 31(13), 1963–2196 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant (BK20170559) from the Natural Science Foundation of Jiangsu Province, China and grant (No.CE20215046) from Changzhou Science & Technology program.

Author information

Authors and Affiliations

Authors

Contributions

Mingyang Chen developed the original concept and theoretical description. All authors contributed to the writing of the manuscriptand supervised the project. Susu Hu analysed the data and coordinated the manuscript preparation.

Corresponding author

Correspondence to Mingyang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Chen, M., Yang, L. et al. Effectively single high-order mode guidance based on selective mode filtering. Eur. Phys. J. D 76, 57 (2022). https://doi.org/10.1140/epjd/s10053-022-00381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00381-y

Navigation