Skip to main content
Log in

Optimized Gaussian pulse for mirrors and beam splitters in atom interferometry

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The pulse length and off-resonance errors in an atom interferometry caused by the laser parameters drift, the atomic velocity, and the electromagnetic field environment will degrade the performance of the atom interferometry. To improve the accuracy of an atom interferometry, these errors should be eliminated or compensated. In this paper, we proposal an approach to optimize the splitting and mirror Gaussian pulses to improve the tolerance for the interferometry environment. The numerical results show that not only the fidelity of the atomic state obtained under the interaction of a Gaussian pulse with atoms is higher than that gotten under the rectangular pulse atomic interaction, but also the fidelity under the interaction of the optimized Gaussian pulse is the highest and the bandwidth of the fidelity is the largest. Furthermore, the Gaussian pulse sequence consisting of optimized Gaussian pulses can effectively improve the interference fringe contrast of the atom interferometry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results and data are presented in this paper.]

References

  1. P. Berman (ed.), Atom Interferometry (Academic Press, Cambridge, MA, 1997)

    Google Scholar 

  2. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  3. M.J. Snadden, J.M. Mcguirk, P. Bouyer, K.G. Haritos, M.A. Kasevich, Phys. Rev. Lett. 81, 971 (1998)

    Article  ADS  Google Scholar 

  4. G.W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, M.A. Kasevich, Phys. Rev. A 91, 033629 (2015)

    Article  ADS  Google Scholar 

  5. T.L. Gustavson, A. Landragin, M.A. Kasevich, Class. Quant. Grav. 17, 2385 (2000)

    Article  ADS  Google Scholar 

  6. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, F. Biraben, Phys. Rev. Lett. 106, 080801 (2011)

    Article  ADS  Google Scholar 

  7. P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Rev. Lett. 110, 171102 (2013)

    Article  ADS  Google Scholar 

  8. J.M. Hogan, M.A. Kasevich, Phys. Rev. A 94, 033632 (2016)

    Article  ADS  Google Scholar 

  9. A.A. Geraci, A. Derevianko, Phys. Rev. Lett. 117, 261301 (2016)

    Article  ADS  Google Scholar 

  10. P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, J. Khoury, Science 349, 849 (2015)

    Article  ADS  Google Scholar 

  11. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, Phys. Rev. Lett. 98, 111102 (2007)

    Article  ADS  Google Scholar 

  12. Z. Lin, S. Long, B. Tang, C. Xi, M. Zhan, Phys. Rev. Lett. 115, 013004 (2015)

    Article  ADS  Google Scholar 

  13. D.L. Butts, K. Kotru, J.M. Kinast, A.M. Radojevic, B.P. Timmons, R.E. Stoner, J. Opt. Soc. Am. B 30, 922 (2013)

    Article  ADS  Google Scholar 

  14. P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W.P. Schleich, F.A. Narducci, W. Ertmer, E.M. Rasel, Phys. Rev. Lett. 114, 063002 (2015)

    Article  ADS  Google Scholar 

  15. D. Daems, A. Ruschhaupt, D. Sugny, S. Guerin, Phys. Rev. Lett. 111, 050404 (2013)

    Article  ADS  Google Scholar 

  16. A. Dunning, R. Gregory, J. Bateman, N. Cooper, M. Himsworth, J.A. Jones, T. Freegarde, Phys. Rev. A 90, 033608 (2014)

    Article  ADS  Google Scholar 

  17. W.G. Alway, J.A. Jones, J. Magn. Reson. 189, 114 (2007)

    Article  ADS  Google Scholar 

  18. S. McDonald, W.S. Warren, Concep. Magn. Reson. 3, 55 (1991)

    Article  Google Scholar 

  19. N. Sinha, K. Schmidt-Rohr, H. Mei, J. Magn. Reson. 168, 358 (2004)

    Article  ADS  Google Scholar 

  20. J.C. Saywell, K. Ilya, G. David, C. Max, F. Tim, Phys. Rev. A 98, 023625 (2018)

    Article  ADS  Google Scholar 

  21. B. Fang, N. Mielec, D. Savoie, M. Altorio, A. Landragin, R. Geiger, New J. Phys. 20, 023020 (2018)

    Article  ADS  Google Scholar 

  22. R. Stoner, D. Butts, J. Kinast, B. Timmons, J. Opt. Soc. Am. B 28, 2418 (2011)

    Article  ADS  Google Scholar 

  23. B.T. Torosov, N.V. Vitanov, Phys. Rev. A 99, 013402 (2019)

    Article  ADS  Google Scholar 

  24. H. Mäkelä, A. Messina, Phys. Scr. 2010, 14054 (2010)

    Article  Google Scholar 

  25. M. Frimmer, L. Novotny, Am. J. Phys. 82, 947–954 (2014)

  26. Y. Luo, S. Yan, Q. Hu, A. Jia, C. Wei, J. Yang, Eur. Phys. J. D 70, 262 (2016)

  27. T.B. Bahder, P.A. Lopata, Phys. Rev. A 74, 051801 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 12174243).

Author information

Authors and Affiliations

Authors

Contributions

X.Z., X.L., and J.S. made the numerical calculations. X.Z., Z.X., Z.H., and X.Y. wrote the manuscript. Z.X., Z.H., and X.Y. supervised the project.

Corresponding authors

Correspondence to Zhengfeng Hu or Xihua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, X., Sun, J. et al. Optimized Gaussian pulse for mirrors and beam splitters in atom interferometry. Eur. Phys. J. D 76, 39 (2022). https://doi.org/10.1140/epjd/s10053-022-00368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00368-9

Navigation