Skip to main content
Log in

Efficient 2D molasses cooling of a cesium beam using a blue detuned top-hat beam

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have performed a 2D blue detuned Sisyphus collimation of a cesium beam. Compared to a red detuned Doppler transverse molasses cooling, the setup was found very advantageous because of its faster cooling time allowing a short (\({1}~\text {cm}\)) cooling length and thus finally a denser atomic beam. A fibered laser was developed delivering up to \({500}\,\text {mW}\) fiber coupled optical power. A 2D collimation was realized but this can be done only if the two cooling zones were not overlapping. A beam density enhancement of more than 10 was observed. We found that a simple top-hat beam was more efficient than a Gaussian one. Similar cooling applies to other atom species and leads to a simple method to produce bright collimated atomic beams.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

“This manuscript has no associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]”

Notes

  1. www.altechna.com reference 1-PL-1-B9201.

References

  1. Paul D. Lett, William D. Phillips, S.L. Rolston, Carol E. Tanner, R.N. Watts, C.I. Westbrook, Optical molasses. JOSA B 6(11), 2084–2107 (1989)

    Article  ADS  Google Scholar 

  2. Harold J. Metcalf, Peter Van der Straten. Laser cooling and trapping of neutral atoms. The Optics Encyclopedia: Basic Foundations and Practical Applications, (2007)

  3. F. Lison, P. Schuh, D. Haubrich, D. Meschede, High-brilliance zeeman-slowed cesium atomic beam. Phys. Rev. A 61(1), 013405 (1999)

    Article  ADS  Google Scholar 

  4. Slowe Christopher, Vernac Laurent, Lene Vestergaard Hau, High flux source of cold rubidium atoms. Rev. Sci. Instrum. 76(10), 103101 (2005)

    Article  Google Scholar 

  5. Alexander D. Cronin, Schmiedmayer Jörg, David E. Pritchard, Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81(3), 1051 (2009)

    Article  ADS  Google Scholar 

  6. William D. Phillips, Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70(3), 721 (1998)

    Article  ADS  Google Scholar 

  7. L. Kime, A. Fioretti, Y. Bruneau, N. Porfido, Fuso Francesco, M. Viteau, G. Khalili, A. Neven Šantić, B. Rasser. Gloter et al., High-flux monochromatic ion and electron beams based on laser-cooled atoms. Phys. Rev. A 88(3), 033424 (2013)

    Article  ADS  Google Scholar 

  8. Jabez J. McClelland, Adam V. Steele, B. Knuffman, Kevin A. Twedt, A. Schwarzkopf, Truman M. Wilson, Bright focused ion beam sources based on laser-cooled atoms. Appl. Phys. Rev. 3(1), 011302 (2016)

    Article  ADS  Google Scholar 

  9. Andrew J. McCulloch, Ben M. Sparkes, Robert E. Scholten, Cold electron sources using laser-cooled atoms. J. Phys. B: At., Mol. Opt. Phys. 49(16), 164004 (2016)

    Article  ADS  Google Scholar 

  10. A. Scholz, M. Christ, D. Doll, J. Ludwig, W. Ertmer, Magneto-optical preparation of a slow, cold and bright \(\text{ ne}^*\) atomic beam. Opt. Commun. 111(1–2), 155–162 (1994)

    Article  ADS  Google Scholar 

  11. K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller, J.T.M. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58(5), 3891 (1998)

    Article  ADS  Google Scholar 

  12. G. ten Haaf, T.C.H. de Raadt, G.P. Offermans, J.F.M. van Rens, P.H.A. Mutsaers, E.J.D. Vredenbregt, S.H.W. Wouters, Direct magneto-optical compression of an effusive atomic beam for application in a high-resolution focused ion beam. Phys. Rev. Appl. 7(5), 054013 (2017)

    Article  ADS  Google Scholar 

  13. Yoann Bruneau, Guyve Khalili, Pierre Pillet, Daniel Comparat, Guided and focused slow atomic beam from a 2 dimensional magneto optical trap. The Eur. Phys. J. D 68(4), 92 (2014)

    Article  ADS  Google Scholar 

  14. Castagna Natascia, Guéna. Jocelyne, M.D. Plimmer, Thomann Pierre, A novel simplified two-dimensional magneto-optical trap as an intense source of slow cesium atoms. The Eur. Phys. J.-Appl. Phys. 34(1), 21–30 (2006)

    Article  Google Scholar 

  15. G.S. Tompa, J.L. Lopes, G. Wohlrab, Compact efficient modular cesium atomic beam oven. Rev. Sci. Instrum. 58(8), 1536–1537 (1987)

    Article  ADS  Google Scholar 

  16. Takeshi Ikegami, Angular distribution measurement of cesium atomic beam from long tube collimators. Jpn. J. Appl. Phys. 33(8R), 4795 (1994)

    Article  ADS  Google Scholar 

  17. A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Cooling atoms with stimulated emission. Phys. Rev. Lett. 57(14), 1688 (1986)

    Article  ADS  Google Scholar 

  18. J. Dalibard, C. Cohen-Tannoudji, Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2(11), 1707–1720 (1985)

    Article  ADS  Google Scholar 

  19. P.S. Jessen, I.H. Deutsch, Opt. latt. 37, 95–138 (1996)

    Google Scholar 

  20. Gilbert Grynberg, Cécile. Robilliard, Cold atoms in dissipative optical lattices. Phys. Rep. 355(5–6), 335–451 (2001)

    Article  ADS  Google Scholar 

  21. Yvan Castin, Kirstine Berg-Sørensen, Jean Dalibard, Klaus Mølmer, Two-dimensional sisyphus cooling. Phys. Rev. A 50, 5092–5115 (1994)

    Article  ADS  Google Scholar 

  22. Jeffrey J. Tollett, Chen Jian, J. Greg, N.W.M. Ritchie. Story, Curtis C. Bradley, Randall G. Hulet, Observation of velocity-tuned multiphoton doppleron resonances in laser-cooled atoms. Phys. Rev. Lett. 65(5), 559 (1990)

    Article  ADS  Google Scholar 

  23. J. J. Tollett, J. Chen, C. C. Bradley, N. W. M. Ritchie, John Greg Story, Randall G. Hulet, Laser cooling of lithium atoms by a strong standing wave, in International Quantum Electronics Conference, page QTHM6. Optical Society of America, (1990)

  24. Fujio Shimizu, Kazuko Shimizu, Hiroshi Takuma, A high intensity metastable neon trap. Chem. Phys. 145(2), 327–331 (1990)

    Article  Google Scholar 

  25. H.-A. Bachor, Q. Li, B.W. Stenlake, I.C.M. Littler, K.G.H. Baldwin, D.E. McClelland, Atoms optics with standing waves of light. In Quantum Optics VI (Springer, Berlin, 1994)

    Google Scholar 

  26. Qi-ming, Li. The investigation of the interaction of a sodium atomic beam with a strong standing wave laser field. PhD thesis, The Australian National University, (1994)

  27. M. Drewsen, N.V. Vitanov, H.K. Haugen, Transverse laser cooling of a metastable argon beam: Dependence on the interaction time. Phys. Rev. A 47(4), 3118 (1993)

    Article  ADS  Google Scholar 

  28. Shangyan Li, Min Zhou, Xu. Xinye, Analysis of atomic beam collimation by laser cooling. Sci. Rep. 8(1), 1–9 (2018)

    ADS  Google Scholar 

  29. Florian Mühlbauer, Niels Petersen, Carina Baumgärtner, Lena Maske, Patrick Windpassinger, Systematic optimization of laser cooling of dysprosium. Appl. Phys. B 124(6), 120 (2018)

    Article  ADS  Google Scholar 

  30. M. Drewsen, N.V. Vitanov, Intensifying atomic beams by two-step transverse laser cooling. J. Phys. B: Atom., Mol. Opt. Phys. 26(22), 4109 (1993)

    Article  ADS  Google Scholar 

  31. B. Sheehy, Shang Song-Quan, R. Watts, S. Hatamian, H. Metcalf, Diode-laser deceleration and collimation of a rubidium beam. JOSA B 6(11), 2165–2170 (1989)

    Article  ADS  Google Scholar 

  32. Carol E. Tanner, Bernard P. Masterson, Carl E. Wieman, Atomic beam collimation using a laser diode with a self-locking power-buildup cavity. Opt. lett. 13(5), 357–359 (1988)

    Article  ADS  Google Scholar 

  33. Cho Donghyun, S.C. Bennett, C.E. Wieman, Transverse cooling of a cesium atomic beam. J. Korean Phys. Soc. 35(3), 244–247 (1999)

    Google Scholar 

  34. Laura Antoni-Micollier, Matthieu Viteau, Baptiste Battelier, Benoit Cadier, Daniel Comparat, Bruno Desruelle, Germain Guiraud, Emmanuel Pinsard, Morgan Reveillard, Sergio Rota-Rodrigo et al., Watt-level narrow-linewidth fibered laser source at 852 nm for fib application. Opt. lett. 43(16), 3937–3940 (2018)

    Article  ADS  Google Scholar 

  35. M. Viteau, M. Reveillard, L. Kime, B. Rasser, P. Sudraud, Y. Bruneau, G. Khalili, P. Pillet, D. Comparat, Guerri Irene et al., Ion microscopy based on laser-cooled cesium atoms. Ultramicroscopy 164, 70–77 (2016)

    Article  Google Scholar 

  36. M. Reveillard, M. Viteau, A. Houel, D. Comparat et al., Coldfib-the new fib source from laser cooled atoms. Microsc. Microanal. 24(S1), 804–805 (2018)

    Article  Google Scholar 

  37. A. Pailloux, T. Alpettaz, E. Lizon, Candlestick oven with a silica wick provides an intense collimated cesium atomic beam. Rev. Sci. Inst. 78(2), 023102 (2007)

    Article  ADS  Google Scholar 

  38. C. Cohen-Tannoudji, Atomic motion in laser light. Fundamental systems in quantum optics 53, 1–164 (1990)

    Google Scholar 

  39. Jean, Dalibard. Le rôle des fluctuations dans la dynamique d’un atome couplé au champ électromagnétique. PhD thesis, Université Pierre et Marie Curie-Paris VI, (1986)

  40. Cyril Bernard Lucas, Atomic and molecular beams: production and collimation (CRC Press, Florida, 2013)

    Book  Google Scholar 

  41. O. Homburg, T. Mitra, Gaussian-to-top-hat beam shaping: an overview of parameters, methods, and applications, in Laser Resonators Microresonators and Beam Control XIV, vol. 8236, ed. by A.V. Kudryashov, A.H. Paxton, V.S. Ilchenko (International Society for Optics and Photonics, SPIE, United States, 2012), pp. 62–70

    Chapter  Google Scholar 

  42. Ola, Willstrand. Intensity distribution conversion from gaussian to top-hat in a single-mode fiber connector. Lund Rep. Atom. Phys. (2013)

  43. N. Mielec, M. Altorio, R. Sapam, D. Horville, D. Holleville, L.A. Sidorenkov, A. Landragin, R. Geiger, Atom interferometry with top-hat laser beams. Appl. Phys. Lett. 113(16), 161108 (2018)

    Article  ADS  Google Scholar 

  44. Yajun Li, Light beams with flat-topped profiles. Opt. lett. 27(12), 1007–1009 (2002)

    Article  ADS  Google Scholar 

  45. F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, D. Meschede, Nanoscale atomic lithography with a cesium atomic beam. Appl. Phys. B: Lasers & Opt. 65(3) (1997)

  46. Daniel Comparat, Molecular cooling via sisyphus processes. Phys. Rev. A 89(4), 043410 (2014)

    Article  ADS  Google Scholar 

  47. Harold Metcalf, Colloquium: Strong optical forces on atoms in multifrequency light. Rev. Mod. Phys. 89(4), 041001 (2017)

    Article  ADS  Google Scholar 

  48. Thierry Chanelière, Daniel Comparat, Hans Lignier, Phase-space-density limitation in laser cooling without spontaneous emission. Phys. Rev. A 98(6), 063432 (2018)

    Article  ADS  Google Scholar 

  49. Matthew A. Norcia, Julia R.K.. Cline, John P. Bartolotta, Murray J. Holland, James K. Thompson, Narrow-line laser cooling by adiabatic transfer. New J. Phys. 20(2), 023021 (2018)

    Article  ADS  Google Scholar 

  50. Chen Chun-Chia, Bennetts Shayne, Rodrigo González, Florian Escudero, Benjamin Schreck, Benjamin Pasquiou, Sisyphus optical lattice decelerator. Phys. Rev. A 100(2), 023401 (2019)

    Article  ADS  Google Scholar 

  51. Long Xueping, S. Yu Scarlett, Andrew M. Jayich, Wesley C. Campbell, Suppressed spontaneous emission for coherent momentum transfer. Phys. Rev. lett. 123(3), 033603 (2019)

    Article  ADS  Google Scholar 

  52. John P. Bartolotta, Jarrod T. Reilly, Murray J. Holland, Speeding up particle slowing using shortcuts to adiabaticity. Phys. Rev. A 102(4), 043107 (2020)

    Article  ADS  Google Scholar 

  53. Ya-Fen. Hsiao, Yu.-Ju. Lin, Ying-Cheng. Chen, \(\lambda \)-enhanced gray-molasses cooling of cesium atoms on the d 2 line. Phys. Rev. A 98(3), 033419 (2018)

    Article  ADS  Google Scholar 

  54. T.L. Gustavson, P. Bouyer, M.A. Kasevich, Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. lett. 78(11), 2046 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (ANR) (LAB COM-17 LCCO 0002 01); Conseil Régional Nouvelle Aquitaine (2017-1R50302-00013493) and the Fond Unique Interministériel (IAPP-FUI-22) COLDFIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Comparat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reveillard, M., Viteau, M., Santarelli, G. et al. Efficient 2D molasses cooling of a cesium beam using a blue detuned top-hat beam. Eur. Phys. J. D 76, 35 (2022). https://doi.org/10.1140/epjd/s10053-022-00361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00361-2

Navigation