Skip to main content
Log in

Enhancing the performance of the counter-propagating dual-beam optical trap with the asymmetric configuration

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The trapping stiffness and width are two important parameters to characterize a counter-propagating dual-beam optical trap. We present two types of asymmetric counter-propagating dual-beam optical trap with the different numerical aperture (NA) and trapping power to eliminate the multi-equilibrium positions when two foci of the optical trap are not coincided. Meanwhile, the asymmetric dual-beam trap with the different NA enhances the axial trapping width and stiffness over five and three times, respectively, higher than the standard dual-beam trap with the higher and same average NA. Besides, it increases the transverse trapping stiffness when two foci are not coincided. The asymmetric dual-beam optical trap will benefit the future applications for the study of precision measurement, basic physics and biomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data in the manuscript because we see that it is more convenient to represent the obtained results in figures.]

References

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  2. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  3. A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769–771 (1987)

    Article  ADS  Google Scholar 

  4. A. Ashkin, J.M. Dziedzic, Science 187, 1073 (1975)

    Article  ADS  Google Scholar 

  5. D.G. Grier, Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  6. K. Dholakia, P. Reece, M. Gu, Chem. Soc. Rev. 37, 42 (2007)

    Article  Google Scholar 

  7. R.J. Hopkins, L. Mitchem, A.D. Ward, J.P. Reid, Phys. Chem. Chem. Phys. 6, 4924 (2004)

    Article  Google Scholar 

  8. J. Ahn, Z. Xu, J. Bang et al., Nat. Nanotechnol 15, 89 (2020)

    Article  ADS  Google Scholar 

  9. Y. Zheng, L.-M. Zhou, F.-W. Sun, Phys. Rev. Lett. 124, 223603 (2020)

    Article  ADS  Google Scholar 

  10. T. Kuang, W. Xiong, B. Luo, X. Chen, G. Xiao, Opt. Express 28, 35734 (2020)

    Article  ADS  Google Scholar 

  11. W. Xiong, G. Xiao, Y. Zhang, X. Han, Appl Phys Express 12, 062006 (2019)

    Article  ADS  Google Scholar 

  12. G. Ranjit, M. Cunningham, K. Casey, A.A. Geraci, Phys. Rev. A. 93, 053801 (2016)

    Article  ADS  Google Scholar 

  13. F. Monteiro, S. Ghosh, A.G. Fine, D.C. Moore, Phys. Rev. A. 96, 063841 (2017)

    Article  ADS  Google Scholar 

  14. S. Rancourt-Grenier, M.T. Wei, J.J. Bai, A. Chiou, Opt. Express 18, 10462–10472 (2010)

    Article  ADS  Google Scholar 

  15. T.B. Lindballe, M.V. Kristensen, A.P. Kylling, D.Z. Palima, H. Stapelfeldt, JEOS 6(1), 11057 (2011)

    Article  Google Scholar 

  16. J. Chen, H. Hu, Y. Shen, SOPO 4, 5230294 (2009)

    Google Scholar 

  17. O. Brzobohaty, A.V. Arzola, Opt. Express 23, 7272 (2015)

    ADS  Google Scholar 

  18. G. Xiao, T. Kuang, B. Luo, W. Xiong, Opt. Express 24, 36663 (2019)

    Google Scholar 

  19. Li T. Ph.D. thesis, Purdue University, 2013

  20. E. Sidick, S.D. Collins, A. Knoesen, Appl. Opt. 36, 6423 (1997)

    Article  ADS  Google Scholar 

  21. K.F. Ren, G. Gréhan, G. Gouesbet, Appl Opt 35, 2702 (1996)

    Article  ADS  Google Scholar 

  22. J.A. Lock, Appl Optics 43, 2532 (2004)

    Article  ADS  Google Scholar 

  23. N.J. Dipankar Sarkar, Halas. Phys. Rev. E 56, 1102 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Gérard, J.A. Lock, J. Opt. So. Am. A 11(9), 2516–2525 (1994)

    Article  ADS  Google Scholar 

  25. A. Doicu, T. Wriedt, Appl. Opt. 36, 2971 (1997)

    Article  ADS  Google Scholar 

  26. G. Martinot-Lagarde, B. Pouligny, M.I. Angelova, G. Grehan, G. Gouesbet, Pure Appl. Opt. 4, 571 (1995)

    Article  ADS  Google Scholar 

  27. Z.-J. Li, Wu. Zhen-Sen, Q.-C. Shang, Opt. Express 19, 16044 (2011)

    Article  ADS  Google Scholar 

  28. H. Sosa-Martínez, J.C. Gutiérrez-Vega, JOSAB 26, 2109 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61975237, 11904405), Scientific Research Project of National University of Defense Technology (ZK20-14) and Independent Scientific Research Project of National University of Defense Technology (ZZKY-YX-07-02)

Author information

Authors and Affiliations

Authors

Contributions

The idea was proposed by Zhijie Chen and Guangzong Xiao, and the results were done and analyzed by Zhijie Chen, Wei Xiong. The paper was written by all authors.

Corresponding author

Correspondence to Guangzong Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xiong, W., Kuang, T. et al. Enhancing the performance of the counter-propagating dual-beam optical trap with the asymmetric configuration. Eur. Phys. J. D 76, 13 (2022). https://doi.org/10.1140/epjd/s10053-021-00333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00333-y

Navigation