Skip to main content
Log in

Electron collisions with formic acid

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report elastic, electronically inelastic, total ionization and total cross sections for the scattering of electrons by trans-formic acid. The calculations of the elastic and electronically inelastic cross sections were performed with the Schwinger multichannel method implemented with norm-conserving pseudopotentials. The electronically inelastic calculations were done within the minimal orbital basis for single configuration interaction approach with different multichannel coupling schemes considering from 1 up to 51 open channels, which enable us to study the influence of the multichannel coupling effects on the calculated cross sections. Polarization effects in the elastic channel were taken into account considering only the excitations related to the pairs used in the minimal orbital basis for single configuration interaction approach. We found that the magnitude of the elastic and inelastic cross sections decreases as more channels are treated as open in the scattering calculations. The calculated elastic differential cross sections present an overall good agreement with previous studies found in the literature. The elastic integral cross section presents a well-known \(\pi ^*\) shape resonance centered at 1.96 eV. The total ionization cross section was calculated with the binary-encounter-Bethe model and presents a good agreement with previous results from the literature. The total cross section was estimated using the calculated elastic, inelastic and ionization cross sections.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository. [Authors’ comment: All relevant data regarding this work is presented in the paper itself. The tabulated cross sections are available under request].

References

  1. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  2. M.A. Huels, I. Hahndorf, E. Illenberger, L. Sanche, J. Chem. Phys. 108, 1309 (1998)

    Article  ADS  Google Scholar 

  3. L. Sanche, Nature 461, 7262 (2009)

    Article  Google Scholar 

  4. M.C. Boyer, N. Rivas, A.A. Tran, C.A. Verish, C.R. Arumainayagam, Surf. Sci. 652, 26 (2016)

    Article  ADS  Google Scholar 

  5. S. Pilling, D.P.P. Andrade, A.C. Neto, R. Rittner, A.N. de Brito, J. Phys. Chem. A 113, 11161 (2009)

    Article  Google Scholar 

  6. G.A. Kumar, Y. Pan, C.J. Smallwood, M.A. McAllister, J. Comp. Chem. 19, 1347 (1998)

    Article  Google Scholar 

  7. J.F. Briscoe, C.B. Moore, Meteoritics. 28, 330 (1993)

    ADS  Google Scholar 

  8. D. Bockéele-Morvan, D.C. Lis, J.E. Wink, D. Despois, J. Crovisier, R. Bachiller, D.J. Benford, N. Biver, P. Colom, J.K. Davies, E. Gérar, B. Germain, M. Houde, D. Mehringer, R. Moreno, G. Paubert, T.G. Phillips, H. Rauer, Astron. Astrophys. 353, 1101 (2000)

    ADS  Google Scholar 

  9. S.-Y. Liu, D.M. Mehringer, L.E. Snyder, Astro. J. 552, 654 (2001)

    Article  ADS  Google Scholar 

  10. J.V. Keane, A.G.G.M. Tielens, A.C.A. Boogert, W.A. Schutte, D.C.B. Whittet, Astron. Astrophys. 376, 254 (2001)

    Article  ADS  Google Scholar 

  11. M.A. Requena-Torres, J. Martín-Pintado, A. Rodríguez-Franco, S. Martín, N.J. Rodríguez-Fernández, P. de Vicente, Astron. Astrophys. 455, 971 (2006)

    Article  ADS  Google Scholar 

  12. B.M. Bode, M.S. Gordon, J. Mol. Graph. Model. 16, 133 (1998)

    Article  Google Scholar 

  13. A. Pelc, W. Sailer, P. Scheier, M. Probst, N.J. Manson, E. Illenberger, T.D. Märk, Chem. Phys. Lett. 361, 277 (2002)

    Article  ADS  Google Scholar 

  14. V.S. Prabhudesai, D. Nandi, A.H. Kelkar, R. Parajuli, E. Krishnakumar, Chem. Phys. Lett. 405, 172 (2005)

    Article  ADS  Google Scholar 

  15. T.N. Rescigno, C.S. Trevisan, A.E. Orel, Phys. Rev. Lett. 96, 213201 (2006)

    Article  ADS  Google Scholar 

  16. G.A. Gallup, P.D. Burrow, I.I. Fabrikant, Phys. Rev. A 79(4), 042701 (2009)

    Article  ADS  Google Scholar 

  17. T.N. Rescigno, C.S. Trevisan, A.E. Orel, Phys. Rev. A 80, 046701 (2009)

    Article  ADS  Google Scholar 

  18. G.A. Gallup, P.D. Burrow, I.I. Fabrikant, Phys. Rev. A 80(4), 046702 (2009)

    Article  ADS  Google Scholar 

  19. M. Allan, J. Phys. B: At. Mol. Opt. Phys. 39, 2939 (2006)

    Article  ADS  Google Scholar 

  20. V. Vizcaino, M. Jelisavcic, J.P. Sullivan, S.J. Buckman, New J. Phys. 8, 85 (2006)

    Article  ADS  Google Scholar 

  21. M. Kimura, O. Sueoka, A. Hamada, Y. Itikawa, Adv. Chem. Phys. 111, 537 (2000)

    Google Scholar 

  22. F.A. Gianturco, R.R. Lucchese, New J. Phys. 6, 1 (2004)

    Article  MathSciNet  Google Scholar 

  23. F.A. Gianturco, R.R. Lucchese, Eur. Phys. J. D 39, 399 (2006)

    Article  ADS  Google Scholar 

  24. F.A. Gianturco, R.R. Lucchese, J. Langer, I. Martin, M. Stano, G. Karwasz, E. Illenberger, Eur. Phys. J. D 35, 417 (2005)

    Article  ADS  Google Scholar 

  25. C.S. Trevisan, A.E. Orel, T.N. Rescigno, Phys. Rev. A 74, 042716 (2006)

    Article  ADS  Google Scholar 

  26. M.H.F. Bettega, Phys. Rev. A 74, 054701 (2006)

    Article  ADS  Google Scholar 

  27. M. Vinodkumar, K.N. Joshipura, C. Limbachiya, N. Manson, Phys. Rev. A 74, 022721 (2006)

    Article  ADS  Google Scholar 

  28. M. Vinodkumar, H. Bhutadia, B. Antony, N. Manson, Phys. Rev. A 84, 052701 (2011)

    Article  ADS  Google Scholar 

  29. M. Vinodkumar, H. Bhutadia, C. Limbachiya, K.N. Joshipura, Int. J. Mass Spec. 308, 35 (2011)

    Article  Google Scholar 

  30. P. Możejko, Eur. Phys. J. Spec. Topics 144, 233 (2007)

    Article  ADS  Google Scholar 

  31. M. Zawadzki, Eur. Phys. J. D 72, 12 (2018)

  32. S. Pilling, A.C.F. Santos, W. Wolff, M.M. Sant’Anna, A.L.F. Barros, G.G.B. de Souza, N.V. de Castro Faria, H.M. Boechat-Roberty, Mon. Not. R. Astron. Soc. 372, 1379–1388 (2006)

    Article  ADS  Google Scholar 

  33. A. Loupas, K. Regeta, M. Allan, J.D. Gorfinkiel, J. Phys. Chem. A 122, 1146 (2018)

    Article  Google Scholar 

  34. T.N. Rescigno, A.E. Orel, Phys. Rev. A 88, 012703 (2013)

    Article  ADS  Google Scholar 

  35. K. Takatsuka, V. McKoy, Phys. Rev. A 24, 2473 (1981)

    Article  ADS  Google Scholar 

  36. K. Takatsuka, V. McKoy, Phys. Rev. A 30, 1734 (1984)

    Article  ADS  Google Scholar 

  37. G.L.C. de Souza, I. Iga, L.E. Machado, L.M. Brescansin, M.-T. Lee, J. Phys. B: At. Mol. Opt. Phys. 41, 045203 (2008)

    Article  ADS  Google Scholar 

  38. F. Blanco, L. Ellis-Gibbings, G. García, Chem. Phys. Lett. 645, 71 (2016)

    Article  ADS  Google Scholar 

  39. C. Winstead, Q. Sun, J.L.S. Lino, M.A.P. Lima, J. Chem. Phys. 98, 2132 (1993)

    Article  ADS  Google Scholar 

  40. W.J. Hunt, W.A. Goddard III., Chem. Phys. Lett. 3, 414 (1969)

    Article  ADS  Google Scholar 

  41. R.F. da Costa, F.J. da Paixao, M.A.P. Lima, J. Phys. B: At. Mol. Opt. Phys. 38, 4363 (2005)

    Article  ADS  Google Scholar 

  42. A.G. Falkowski, M.A.P. Lima, F. Kossoski, J. Chem. Phys. 152, 244302 (2020)

    Article  ADS  Google Scholar 

  43. M.A.P. Lima, T.L. Gibson, W.M. Huo, V. McKoy, Phys. Rev. A 32, 2696 (1985)

    Article  ADS  Google Scholar 

  44. M.A.P. Lima, T.L. Gibson, K. Takatsuka, V. McKoy, Phys. Rev. A 30, 1741 (1984)

    Article  ADS  Google Scholar 

  45. M.A.P. Lima, T.L. Gibson, K. Takatsuka, V. McKoy, Phys. Rev. A 30, 3005 (1984)

    Article  ADS  Google Scholar 

  46. R.F. da Costa, M.T.N. da Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 69, 159 (2015)

    Article  ADS  Google Scholar 

  47. Y. Kim, M.E. Rudd, Phys. Rev. A. 50, 3954 (1994)

    Article  ADS  Google Scholar 

  48. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  49. G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)

    Article  ADS  Google Scholar 

  50. M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lima, L.G. Ferreira, Int. J. Quant. Chem. 60, 821 (1996)

    Article  Google Scholar 

  51. T.H. Dunning Jr., J. Chem. Phys. 53, 2823 (1970)

    Article  ADS  Google Scholar 

  52. See, for example, G.M. Moreira, M.H.F. Bettega, R.F. da Costa, J. Appl. Phys. 129, 203301 (2021) and references therein

  53. A. Osted, J. Kongsted, O. Christiansen, J. Phys. Chem. A 109, 1430 (2005)

    Article  Google Scholar 

  54. S. Iwata, K. Morokuma, Theor. Chimica Acta. 44, 326 (1977)

    Article  Google Scholar 

  55. D. Demoulin, Chem. Phys. 17, 471 (1976)

  56. T. Ari, M.H. Güven, J. Elec. Spec. Rel. Phenom. 106, 29 (2000)

    Article  Google Scholar 

  57. C. Fridh, J. Chem. Soc., Faraday Trans. 2 74, 190 (1978)

  58. CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 79th edn. (CRC, Boca Raton, 1998)

Download references

Acknowledgements

P.A.S.R. and M.H.F.B. acknowledge the support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). M.H.F.B. acknowledges the Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under CAPES/PrInt programme. The authors acknowledge the computational support from Professor Carlos M. de Carvalho at LFTC-DFis-UFPR and from CENAPAD-SP. The authors would like to thank Prof. Romarly F. da Costa, Prof. Marco A. P. Lima, Dr. Fábris Kossoski and MSc. Alan G. Falkowski for insightful discussion on MOB-SCI and on TCIS approaches.

Professor Vincent McKoy had a profound influence in the research of electron-molecule collisions in Brazil. “Vince” will always be remembered as a wise mentor, an insightful collaborator and, above all, as a very dear friend.

Author information

Authors and Affiliations

Authors

Contributions

PASR and GMM performed electron-scattering cross section calculations. All authors contributed in the analysis and discussion of the results and also in paper writing and proof reading.

Corresponding author

Correspondence to Giseli M. Moreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randi, P.A.S., Moreira, G.M. & Bettega, M.H.F. Electron collisions with formic acid. Eur. Phys. J. D 75, 306 (2021). https://doi.org/10.1140/epjd/s10053-021-00318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00318-x

Navigation