Skip to main content
Log in

Optical gain in a free-electron laser with laser wiggler in the presence of a magnetized ion-channel

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we analytically investigated the optical gain in a free-electron laser (FEL) with a laser wiggler in the presence of a magnetized ion-channel. Electron trajectories, energy exchanges and optical gain of the FEL in the presence of magnetized ion-channel have been calculated. Laser wiggler due to its very short wiggler wavelength (in the micrometer range) provides both shorter output wavelength (in the X-ray range) and higher optical gain relative to the common magneto-static (helical or planar) wigglers. The results indicated that there are three groups of orbits (G.I.O, G.II.O, and G.III.O) in the presence of a magnetized ion-channel, whereas only two groups were found in the unmagnetized case. Further results revealed a strong laser gain due to the presence of G.II.O in the magnetized ion-channel, while this significant optical gain was not observed in the unmagnetized ion-channel. The most significant characteristic of our scheme is its output wavelength scalability by controlling the ion-channel and axial magnetic frequencies, as well as laser wiggler parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data have been included in the paper.]

References

  1. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Phys. Rep. 260, 187–327 (1995)

    Article  ADS  Google Scholar 

  2. C. Pellegrini, A. Marinelli, S. Reiche, Rev. Mod. 88, 015006 (2016)

    Article  ADS  Google Scholar 

  3. V.A. Savilov, Phys. Plasmas 27, 063103 (2020)

    Article  ADS  Google Scholar 

  4. X.F. Shu, J. Liu, Phys. Plasmas 26, 023108 (2019)

    Article  ADS  Google Scholar 

  5. N. Mahdizadeh, Optik 182, 1170–1175 (2019)

  6. A. Dezhpour, S. Jafari, H. Mehdian, Eur. Phys. J. Plus 133, 473 (2018)

    Article  Google Scholar 

  7. R. Hedayati, S. Jafari, S. Batebi, Plasma Phys. Control. Fusion 57, 085007 (2015)

    Article  ADS  Google Scholar 

  8. A.A. Lutman, J.P. MacArthur, M. Ilchen, A.O. Lindahl, J. Buck, R.N. Coffee, G.L. Dakovski, L. Dammann, Y. Ding, H.A. Dürr, L. Glaser, Nat. Photonics 10, 468–472 (2016)

    Article  ADS  Google Scholar 

  9. N.S. Ginzburg, N.Y. Peskov, Phys. Rev. Spec. Top. Accel. Beams 16, 090701 (2013)

    Article  ADS  Google Scholar 

  10. J.P. MacArthur, J. Duris, Z. Zhang, A. Lutman, A. Zholents, X. Xu, Z. Huang, A. Marinelli, Phys. Rev. Lett. 23, 214801 (2019)

    Article  ADS  Google Scholar 

  11. N. Kant, J. Rajput, A. Singh, High Energy Density Phys. 26, 16–22 (2018)

    Article  ADS  Google Scholar 

  12. K. Zhukovsky, J. Phys. D Appl. Phys. 50, 505601 (2017)

    Article  Google Scholar 

  13. H.E. Amri, T. Mohsenpour, Phys. Plasmas 23, 022101 (2016)

    Article  ADS  Google Scholar 

  14. S. Owada, K. Togawa, T. Inagaki, T. Hara, T. Tanaka, Y. Joti, T. Koyama, K. Nakajima, H. Ohashi, Y. Senba, T. Togashi, J. Synchrotron Radiat. 25, 282–288 (2018)

    Article  Google Scholar 

  15. M. Yadav, S.C. Sharma, D.N. Gupta, IEEE Trans. Plasmas Sci. 46, 2521–2527 (2018)

    Article  ADS  Google Scholar 

  16. N. Esmaeildoost, S. Jafari, E. Abbasi, Eur. Phys. J. Plus 131, 192 (2016)

    Article  Google Scholar 

  17. S. Sadegzadeh, A. Hasanbeigi, H. Mehdian, M. Alimohamadi, Phys. Plasmas 19, 023108 (2012)

    Article  ADS  Google Scholar 

  18. S. Jafari, Laser Phys. Lett. 12, 075002 (2015)

    Article  ADS  Google Scholar 

  19. M. Esmaeilzadeh, S. Ebrahimi, A. Saiahian, J.E. Willett, L.J. Willett, Phys. Plasmas 12, 093103 (2005)

    Article  ADS  Google Scholar 

  20. M. Esmaeilzadeh, J.E. Willett, L.J. Willett, J. Plasma Phys. 71, 367–376 (2005)

    Article  ADS  Google Scholar 

  21. A. Kargarian, K. Hajisharifi, Laser Part. Beams 38, 222–228 (2020)

    Article  ADS  Google Scholar 

  22. T. Mohsenpour, J. Theor. Appl. Phys. 8, 1–9 (2014)

    Article  Google Scholar 

  23. H. Mehdian, A. Hasanbeigi, S. Jafari, Phys. Plasmas 15, 123101 (2008)

    Article  ADS  Google Scholar 

  24. H. Mehdian, S. Jafari, A. Hasanbeigi, Phys. Plasmas 15, 073102 (2008)

    Article  ADS  Google Scholar 

  25. H. Shirvani, S. Jafari, J. Synchrotron Radiat. 25, 322–316 (2018)

    Article  Google Scholar 

  26. M. Hosseini, E. Salehi, B. Maraghechi, Indian J. Phys. 93, 1259–1264 (2019)

    Article  ADS  Google Scholar 

  27. T. Mohsenpour, H.E. Amri, Chin. Phys. Lett. 30, 034102 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Payvand Taherparvar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajikarimi, F., Taherparvar, P. & Jafari, S. Optical gain in a free-electron laser with laser wiggler in the presence of a magnetized ion-channel. Eur. Phys. J. D 75, 305 (2021). https://doi.org/10.1140/epjd/s10053-021-00314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00314-1

Navigation