Skip to main content
Log in

Security on quantum authentication

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The authentication bugs of SIM cards in Global System for Mobile (GSM) have led us to write the new protocols for these networks using the principles of quantum cryptography. We provide two protocols for detecting and removing a copied SIM card. The first protocol uses the three-particle entangled source and the quantum channel when the original SIM card and its copy login into the mobile network. The second protocol uses quantum memory embedded in the SIM. These two protocols can help us to authenticate the duplicated SIMs in the next generation of mobile networks.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: This article does not contain any deposited data. Because the proposed protocols give us an overview of the removal of fake SIM cards by telecommunications networks.]

References

  1. C.H. Bennett, G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing. Theoretical Computer Science 560(2014) pp. 7–11

  2. A. Farouk, M. Zakaria, A. Megahed, F.A. Omara, A generalized architecture of quantum secure direct communication for disjointed users with authentication. Sci. Rep. 5, 16080 (2015)

    Article  ADS  Google Scholar 

  3. K. Bartkiewicz, A. Cernoch, K. Lemr, Using quantum routers to implement quantum message authentication and Bell-state manipulatio. Phys. Rev. A. 90, 022335 (2014)

    Article  ADS  Google Scholar 

  4. M. Alizadeh, Some notes on th k-normal elements an k-normal polynomials over finite fields. J. Algebra Appl. 16(01), 1750006 (2017)

    Article  MathSciNet  Google Scholar 

  5. X. Li, D. Zhang, E-commerce security model construction based on Mobile Agent, in International Conference on Networking and Digital Society, 978-1-4244-5161-6/10, IEEE (2010)

  6. Y.Y. Nie, Y.H. Li, Z.S. Wang, Quantum Inf Process 12, 437–448 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Qureshi, T. Shibli, A. Shee, Master Key Secured Quantum Key Distribution, arXiv:1301.5015 (2013)

  8. D. Huang, Z. Chen, Quantum Key Distribution Based on Multi-qubit Hadamard Matrices, IEEE, The Fourth International Conference on Information Assurance and Security (2008)

  9. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  10. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Goldwasser, S. (ed.) Proceedings 35th annual symposium on foundations of computer science, pp. 12–13. IEEE, (1994)

  11. H.K. Lo, M. Curty, K. Tamaki, Secure quantum key distributio. Nat. Photonics 8, 59–604 (2014)

    Article  Google Scholar 

  12. W. Wootters, W. Zurek, A Single Quantum cannot be cloned. Nature. 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  13. A.K. Ekert, Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661–663 (1991)

  14. J. Eberspächer, H.J. Vögel, C. Bettstetter, C. Hartmann, GSM-Architecture, Protocols and Services, 3rd edn. (WILEY, New Jersey, 2008)

    Book  Google Scholar 

  15. M. Rahnema, overview of the GSM system and protocol architectureI, EEE Communications Magazine, 0163-6804/93 (1993)

  16. S. Rass, S. Konig, S. Schauer, The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies, ICQNM (2015)

  17. S. Kak, A three-stage quantum cryptography protocol. Found. Phys. Lett. 19, 293–296 (2006)

    Article  MathSciNet  Google Scholar 

  18. R.J. Young, S.J. Dewhurst, R.M. Stevenson, P. Atkinson, Single electron-spin memory with a semiconductor quantum dot. New J. Phys. 9, 365 (2007)

    Article  ADS  Google Scholar 

  19. C. Simon, M. Afzelius, J. Appel, Quantum memories. Eur. Phys. J. D 58, 1–22 (2010)

    Article  ADS  Google Scholar 

  20. J. Chen, H. Zhou, C. Duan, X. Peng, Preparing Greenberger-Horne-Zeilinger and \(W\) states on a long-range Ising spin model by global controls. Phy. Rev. A 95, 032340 (2017)

    Article  ADS  Google Scholar 

  21. F. Reiter, D. Reeb, A.S. Sørensen, Scalable Dissipative Preparation of Many-Body Entanglement. Phys. Rev. Lett. 117, 040501 (2016)

    Article  ADS  Google Scholar 

  22. M. Anderson, T. Muller, J. Skiba-Szymanska, A.B. Krysa, J. Huwer, R.M. Stevenson, J. Heffernan, D.A. Ritchie, A.J. Shields, Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication C-Band. Phy. Rev. Appl. 13, 054052 (2020)

    Article  ADS  Google Scholar 

  23. P. Recher, B. Trauzettel, Quantum dots and spin qubits in graphene. Nanotechnology 21, 302001 (2010)

    Article  Google Scholar 

  24. G. Brennen, E. Giacobino, C. Simon, Focus on Quantum Memor. New J. Phys. 17, 050201 (2015)

    Article  ADS  Google Scholar 

  25. A. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.P. Jahn, R.J. Warburton, P. Treutlein, Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017)

    Article  ADS  Google Scholar 

  26. D. Dragoman, M. Dragoman, High-Precision Measurement of the Proton’s Atomic Mass. Phys. Rev. Lett. 119, 094902 (2016)

  27. C.L. Kane, E.J. Mele, Quantum spin hall effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  28. Z. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Phys. Rev. Lett. 114, 016603 (2015)

    Article  ADS  Google Scholar 

  29. A. Wallucks, I. Marinković, B. Hensen et al., A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020)

    Article  Google Scholar 

  30. W.Z. Guo, An optimized RFID unidirectional authentication method. Appl. Mech. Mater. 490–491, 1734–1738 (2014)

    Article  Google Scholar 

  31. Z. Li, H. Zhao, Xi. Su, C. Wan, Asymmetric Cryptography Based Unidirectional Authentication Method for RFID,

  32. A. Maitra, Third Party CNOT Attack on MDI QKD, arXiv:1208.5223v2 [quant-ph] 6 Sep (2012)

  33. C.Y. Lin, T. Hwang, CNOT extraction attack on quantum asymmetric cryptography with symmetric keys. Sci. China Phys. Mech. Astron. 57(5), 1001–1003 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from their respective budget, Azad Islamic University, Ahvaz Branch, Ahvaz. The authors also thank the reviewers for a thorough reading of our manuscript and constructive suggestions. Also, we have special thanks to Prof. P. S. Joag as a great teacher.

Author information

Authors and Affiliations

Authors

Contributions

All the work, including conceptualization, methodology, writing, investigation, writing—reviewing, and editing, has been done by three of the authors of the present paper.

Corresponding author

Correspondence to B. Lari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lari, B., Hossientabar, M. & Hassanabadi, H. Security on quantum authentication. Eur. Phys. J. D 75, 269 (2021). https://doi.org/10.1140/epjd/s10053-021-00279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00279-1

Navigation