Skip to main content
Log in

Steady-state quantum phase transition in a Jaynes–Cummings–Hubbard model with quantized center-of-mass motions

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the steady-state quantum phase transition of the Jaynes–Cummings–Hubbard model with quantized center-of-mass motions by using a mean-field method. Four different quantum phases emerge due to the interplay between the atom–photon interaction modulated by the center-of-mass motion and the tunneling of photons. Importantly, as the amplitude of the atomic oscillations increases, the phase boundaries will become more and more blurred. We also observed that the phase diagram changes periodically with the change of the relative position between the trap center and the cavity field.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  Google Scholar 

  2. J. Michael, F.V. Andrés, W. Christof, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009)

    Article  Google Scholar 

  3. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  5. I. Buluta, F. Nori, Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  6. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Laser Photon. Rev. 2, 527 (2008)

    Article  ADS  Google Scholar 

  7. M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  8. A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006)

    Article  Google Scholar 

  9. D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805(R) (2007)

    Article  ADS  Google Scholar 

  10. D. Rossini, R. Fazio, Phys. Rev. Lett. 99, 186401 (2007)

    Article  ADS  Google Scholar 

  11. E.K. Irish, C.D. Ogden, M.S. Kim, Phys. Rev. A 77, 033801 (2008)

    Article  ADS  Google Scholar 

  12. M.I. Makin, J.H. Cole, C. Tahan, L.C.L. Hollenberg, A.D. Greentree, Phys. Rev. A 77, 053819 (2008)

    Article  ADS  Google Scholar 

  13. P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleischhauer, K. Singer, Phys. Rev. A 80, 060301(R) (2009)

    Article  ADS  Google Scholar 

  14. J. Zhang, Y. Jiang, Laser Phys. 27, 035203 (2017)

    Article  ADS  Google Scholar 

  15. S. Schmidt, G. Blatter, Phys. Rev. Lett. 103, 086403 (2009)

    Article  ADS  Google Scholar 

  16. J. Koch, K.L. Hur, Phys. Rev. A 80, 023811 (2009)

    Article  ADS  Google Scholar 

  17. C. Nietner, A. Pelster, Phys. Rev. A 85, 043831 (2012)

    Article  ADS  Google Scholar 

  18. M. Hohenadler, M. Aichhorn, L. Pollet, S. Schmidt, Phys. Rev. A 85, 031810 (2012)

    Article  Google Scholar 

  19. M. Aichhorn, M. Hohenadler, C. Tahan, P.B. Littlewood, Phys. Rev. Lett. 100, 216401 (2008)

    Article  ADS  Google Scholar 

  20. C. Heil, W.V.D. Linden, J. Phys. Condens. Matter 24, 295601 (2012)

    Article  Google Scholar 

  21. D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 76, 1796 (1996)

    Article  ADS  Google Scholar 

  22. J.I. Cirac, A.S. Parkins, R. Blatt, P. Zoller, Phys. Rev. Lett. 70, 556 (1993)

    Article  ADS  Google Scholar 

  23. R.L. deMatosFilho, W. Vogel, Phys. Rev. Lett. 76, 608 (1996)

    Article  ADS  Google Scholar 

  24. R.L. de Matos Filho, W. Vogel, Phys. Rev. A 54, 4560 (1996)

    Article  ADS  Google Scholar 

  25. S.-C. Gou, J. Steinbach, P.L. Phys, Rev. A 54, R1014(R) (1996)

    Article  Google Scholar 

  26. S.-C. Gou, J. Steinbach, P.L. Knight, Phys. Rev. A 54, 4315 (1996)

    Article  ADS  Google Scholar 

  27. C.C. Gerry, S.-C. Gou, J. Steinbach, Phys. Rev. A 55, 630 (1997)

    Article  ADS  Google Scholar 

  28. C. Monroe, D.M. Meekhof, B.E. King, D.J. Winel, Science 272, 1131 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. C.C. Gerry, Phys. Rev. A 55, 2478 (1997)

    Article  ADS  Google Scholar 

  30. S. Wallentowitz, W. Vogel, Phys. Rev. A 55, 4438 (1997)

    Article  ADS  Google Scholar 

  31. J.I. Cirac, M. Lewenstein, P. Zoller, Phys. Rev. A 51, 1650 (1995)

    Article  ADS  Google Scholar 

  32. S. Zippilli, G. Morigi, Phys. Rev. Lett. 95, 143001 (2005)

    Article  ADS  Google Scholar 

  33. J. Koch, F.V. Oppen, Phys. Rev. Lett 94, 206804 (2005)

    Article  ADS  Google Scholar 

  34. J. Koch, F.V. Oppen, A.V. Andreev, Phys. Rev. B 74, 205438 (2006)

    Article  ADS  Google Scholar 

  35. P.K. Ghosh, Ion Traps (Oxford University Press, Oxford, England, 1996)

    Google Scholar 

  36. M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  37. R.V. Hameren, P. Schön, A.M.V. Buul, J. Hoogboom, S.V. Lazarenko, J.W. Gerritsen, H. Engelkamp, P.C.M. Christianen, H.A. Heus, J.C. Maan, T. Rasing, S. Speller, A.E. Rowan, J.A.A.W. Elemans, R.J.M. Nolte, Science 314, 1430 (2006)

    Article  Google Scholar 

  38. S. Stenholm, Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  39. K. Sheshadri, H.R. Krishnamurthy, R. Pandit, T.V. Ramakrishnan, Europhys. Lett. 22, 257 (1993)

    Article  ADS  Google Scholar 

  40. N. Mann, M.R. Bakhtiari, A. Pelster, M. Thorwart, Phys. Rev. Lett. 120, 063605 (2018)

    Article  ADS  Google Scholar 

  41. C. Gao, Z. Liang, Phys. Rev. A 99, 013629 (2019)

    Article  ADS  Google Scholar 

  42. M.J. McDonnell, J.P. Home, D.M. Lucas, G. Imreh, B.C. Keitch, D.J. Szwer, N.R. Thomas, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. Lett. 98, 063603 (2007)

    Article  ADS  Google Scholar 

  43. M. Bienert, G. Morigi, Phys. Rev. A 86, 053402 (2012)

    Article  ADS  Google Scholar 

  44. B.L. Chuah, N.C. Lewty, R. Cazan, M.D. Barrett, Phys. Rev. A 87, 043420 (2013)

    Article  ADS  Google Scholar 

  45. Y. Wan, F. Gebert, F. Wolf, P.O. Schmidt, Phys. Rev. A 91, 043425 (2015)

    Article  ADS  Google Scholar 

  46. X.-H. Cheng, I. Arrazola, J.S. Pedernales, L. Lamata, X. Chen, E. Solano, Phys. Rev. A 97, 023624 (2018)

    Article  ADS  Google Scholar 

  47. J. Javanainen, S. Stenholm, Appl. Phys. 24, 151 (1981)

    Article  ADS  Google Scholar 

  48. J.-L. Ma, L. Tan, Q. Li, H.-Q. Gu, W.-M. Liu, J. Phys. B: At. Mol. Opt. Phys. 53, 195402 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC under Grant No. 11874190 and No. 12047501. Support was also provided by Supercomputing Center of Lanzhou University. We thank Huai-Qiang Gu for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Jin-Lou Ma, Qing Li and Lei Tan conceived the idea. Jin-Lou Ma and Qing Li performed the theoretical as well as the numerical calculations. Jin-Lou Ma and Lei Tan interpreted physics and wrote the manuscript. All of the authors reviewed the manuscript.

Corresponding author

Correspondence to Lei Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JL., Li, Q. & Tan, L. Steady-state quantum phase transition in a Jaynes–Cummings–Hubbard model with quantized center-of-mass motions. Eur. Phys. J. D 75, 262 (2021). https://doi.org/10.1140/epjd/s10053-021-00271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00271-9

Navigation