Skip to main content
Log in

Non-equilibrium plasma for ignition and combustion enhancement

  • Topical Review
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This review is intended to give an overview of recent results on plasma-assisted ignition and combustion. The influence of electrical discharges on combustion processes is introduced, and the excited species and radicals present in large quantity in the plasma are detailed. A description of theoretical problems related to modeling plasma-assisted combustion is given, elucidating the role of excited states in enhancing the reaction rates. Then some experiments are reported, focused on fundamental aspects on the effects of high pressure discharges in improving the ignition of combustion. To conclude, some applications for plasma-assisted combustion and detonation are presented, activated by different kinds of discharges.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The paper has no supplementary material or data associated.]

References

  1. S.M. Starikovskaia, J. Phys. D Appl. Phys. 39, R265–R299 (2006)

    ADS  Google Scholar 

  2. G. Gorchakov, F. Lavrov, Acta Physicochim. URSS 1, 139–144 (1934)

    Google Scholar 

  3. N.N. Semenov, Concerning some problems of chemical kinetics and chemical reactivity (free radicals and chain reactions) (Moscow: USSR Academy of Science Publ.) (In Russian)

  4. S. Starikovskaia, J. Phys. D Appl. Phys. 47, 353001 (2014)

    ADS  Google Scholar 

  5. A. Starikovskiy, N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013)

    Google Scholar 

  6. I.V. Adamovich, W.R. Lempert, Plasma Phys. Controlled Fus. 57, 014001 (2015)

    ADS  Google Scholar 

  7. Y. Ju, W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015)

    Google Scholar 

  8. A.M.R.N. Alrashidi, N.M. Adam, A.A. Hairuddin, L.C. Abdullah, Int. J. Energy Res. 42, 1813–1833 (2018)

    Google Scholar 

  9. N.A. Popov, S.M. Starikovskaia, Prog. Energy Combust. Sci. (2021) (under review)

  10. A.A. Konnov, Combust. Flame 152, 507 (2008)

    Google Scholar 

  11. K. Kumaran, V. Babu, Combust. Flame 156, 826 (2009)

    Google Scholar 

  12. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C.J. Gardiner et al., GRI-Mech Databasehttp://www.me.berkeley.edu/gri_mech/ (1999). http://www.me.berkeley.edu/gri_mech/

  13. O.V. Skrebkov et al., J. Mod. Phys. 19, 131–158 (2015)

    Google Scholar 

  14. O.V. Skrebkov, Combust. Theor. Model. 5, 1806 (2014)

    Google Scholar 

  15. S.P. Karkach, V.I. Osherov, J. Chem. Phys. 110, 11918 (1999)

    ADS  Google Scholar 

  16. G. Colonna, V. Laporta, R. Celiberto, M. Capitelli, J. Tennyson, Plasma Sourc. Sci. Technol. 24, 035004 (2015)

    ADS  Google Scholar 

  17. S.D. Rockwood, Phys. Rev. Lett. 8, 2348 (1973)

    ADS  Google Scholar 

  18. A. Tejero-del Caz, V. Guerra, D. Gonçalves, M.L. da Silva, L. Marques, N. Pinhao, C. Pintassilgo, L. Alves, Plasma Sources Sci. Technol. 28, 043001 (2019)

    ADS  Google Scholar 

  19. G. Colonna, A. D’Angola, in Plasma Modeling: Methods and Applications, edited by G. Colonna, A. D’Angola (IOP Publishing, 2016), chap. 2

  20. G.J.M. Hagelaar, L.C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005)

    ADS  Google Scholar 

  21. G. Capriati, G. Colonna, C. Gorse, M. Capitelli, Plasma Chem. Plasma Process. 12, 237 (1992)

  22. YuP Raizer, Gas Discharge Physics (Springer, Berlin, 1991)

    Google Scholar 

  23. A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2008)

    Google Scholar 

  24. S. Rassou, D. Packan, J. Labaune, Phys. Plasmas 24, 100704 (2017)

    ADS  Google Scholar 

  25. Z.L. Petrović, D. Marić, M. Savić, S. Marjanović, S. Dujko, G. Malović, Plasma Processes Polym. 14, 1600124 (2017)

    Google Scholar 

  26. J. Levaton, A.N. Klein, J. de Amorim, C. Binder, Plasma Res. Express 1, 045004 (2019)

  27. C.J. Peters, M.N. Shneider, R.B. Miles, J. Appl. Phys. 125, 243301 (2019)

    ADS  Google Scholar 

  28. N.A. Popov, Plasma Sources Sci. Technol. 25, 049601 (2016)

    ADS  Google Scholar 

  29. N.A. Popov, Plasma Sources Sci. Technol. 25, 043002 (2016)

    ADS  Google Scholar 

  30. A.M. Starik, N.S. Titova, Dokl. Phys. 45, 5–10 (2000)

    ADS  Google Scholar 

  31. J. Troe, in Physical Chemistry of Fast Reactions (Plenum Press London and New York), Levitt B P, ed. P. 133 (1973)

  32. L. Wu, J. Lane, N.P. Cernansky, D.L. Miller, A.A. Fridman, A.Yu. Starikovskiy, Proc. Combust. Inst. 33, 3219–24 (2011)

    Google Scholar 

  33. Ch. Ding, A.Yu. Khomenko, S.A. Shcherbanev, S.M. Starikovskaia, Plasma Sources Sci. Technol. 28, 085005 (2019)

    ADS  Google Scholar 

  34. S. Sharma, N. Sirse, M. Turner, A. Ellingboe, Phys. Plasmas 25, 063501 (2018)

    ADS  Google Scholar 

  35. G. Colonna, Plasma Sources Sci. Technol. 29, 065008 (2020)

    ADS  Google Scholar 

  36. M. Capitelli, G. Colonna, G. D’Ammando, A. Laricchiuta, L. Pietanza, Plasma Sources Sci. Technol. 26, 034004 (2017)

  37. G. Colonna, C. Gorse, M. Capitelli, M. Winkler, J. Wilhelm, Chem. Phys. Lett. 213, 5 (1993)

    ADS  Google Scholar 

  38. A. D’Angola, G. Coppa, M. Capitelli, C. Gorse, G. Colonna, Comput. Phys. Commun. 181, 1204 (2010)

  39. G. Colonna, L.D. Pietanza, G. D’Ammando, in Plasma Modeling: Methods and Applications, edited by G. Colonna, A. D’Angola (IOP Publishing, 2016), chap. 8

  40. A.M. Starik, N.S. Titova, Combustion. Explos. Shock Waves 38, 253 (2002)

    Google Scholar 

  41. L.D. Pietanza, V. Aquilanti, P. Barreto, M. Capitelli, G. Colonna, A. Lombardi, S. Macheret, F. Palazzetti, in Hypersonic Meteoroid Entry Physics, edited by G. Colonna, M. Capitelli, A. Laricchiuta (IOP Publishing, 2019), pp. 2053-2563, 18–1 to 18–19, ISBN 978-0-7503-1668-2

  42. V. Smirnov, O. Stelmakh, V. Fabelinsky, D. Kozlov, A. Starik, N. Titova, J. Phys. D Appl. Phys. 41, 192001 (2008)

    ADS  Google Scholar 

  43. A. Starik, V. Kozlov, N. Titova, Combust. Flame 157, 313 (2010)

    Google Scholar 

  44. A.S. Sharipov, B.I. Loukhovitski, Chem. Phys. 544, 111098 (2021)

    Google Scholar 

  45. A. Starik, N. Titova, A. Sharipov, Deflagrative and Detonative Combustion (Torus Press, Moscow, 2010), pp. 19–42

    Google Scholar 

  46. S. Yang, S. Nagaraja, W. Sun, V. Yang, J. Phys. D Appl. Phys. 50, 433001 (2017)

    ADS  Google Scholar 

  47. G. Pilla, D. Galley, D.A. Lacoste, F. Lacas, D. Veynante, C.O. Laux, IEEE Trans. Plasma Sci. 34, 2471–2477 (2006)

    ADS  Google Scholar 

  48. Y. Chen, L.M. He, L. Fei, J. Deng, J.P. Lei, H. Yu, Aerosp. Sci. Technol. 99, 105765 (2020)

    Google Scholar 

  49. A. Vincent-Randonnier, S. Larigaldie, P. Magre, V. Sabel’nikov, Plasma Sources Sci. Technol. 16, 149 (2006)

  50. S. Starikovskaia, A.Y. Starikovskii, D. Zatsepin, Combust. Theor. Model. 5, 97 (2001)

    ADS  Google Scholar 

  51. M. Capitelli, C.M. Ferreira, B.F. Gordiets, A.I. Osipov, Plasma Kinetics in Atmospheric Gases, vol. 31 (Springer, 2013)

  52. S. Tanaka, B. Xiao, K. Kazuki, M. Morita, Plasma Phys. Controlled Fus. 42, 1091 (2000)

    ADS  Google Scholar 

  53. A. Starikovskiy, N. Aleksandrov, A. Rakitin, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 370, 740 (2012)

  54. N. Popov, J. Phys. D Appl. Phys. 44, 285201 (2011)

    Google Scholar 

  55. E. Mintoussov, S. Pendleton, F. Gerbault, N. Popov, S. Starikovskaia, J. Phys. D Appl. Phys. 44, 285202 (2011)

    ADS  Google Scholar 

  56. C.D. Pintassilgo, V. Guerra, Plasma Sources Sci. Technol. 26, 055001 (2017)

    ADS  Google Scholar 

  57. K. Hassouni, A. Gicquel, M. Capitelli, J. Loureiro, Plasma Sources Sci. Technol. 8, 494 (1999)

    ADS  Google Scholar 

  58. A. Wedding, A. Phelps, J. Chem. Phys. 89, 2965 (1988)

    ADS  Google Scholar 

  59. V. Laporta, R. Celiberto, J. Wadehra, Plasma Sources Sci. Technol. 21, 055018 (2012)

    ADS  Google Scholar 

  60. J.M. Wadehra, Non-equilibrium vibrational kinetics—Topics, in Current Physics, vol. 39, ed. by M. Capitelli (Springer-Verlag, Berlin, 1986), pp. 191–232

    Google Scholar 

  61. R. Celiberto, R.K. Janev, A. Laricchiuta, M. Capitelli, J.M. Wadehra, D.E. Atems, At. Data Nucl. Data Tables 77, 161 (2001)

    ADS  Google Scholar 

  62. A. Laricchiuta, R. Celiberto, F. Esposito, M. Capitelli, Plasma Sources Sci. Technol. 15, S62 (2006)

    ADS  Google Scholar 

  63. R. Celiberto, M. Capitelli, G. Colonna, G. D’Ammando, F. Esposito, R.K. Janev, V. Laporta, A. Laricchiuta, L.D. Pietanza, M. Rutigliano et al., Atoms 5, 18 (2017)

  64. G. Colonna, L.D. Pietanza, G. D’Ammando, R. Celiberto, M. Capitelli, A. Laricchiuta, Eur. Phys. J. D 71, 1 (2017)

  65. M. Capitelli, G. Colonna, F. Esposito, K. Hassouni, A. Laricchiuta, S. Longo, Fundamental Aspects of Plasma Chemical Physics: Kinetics (Springer, 2015)

  66. G.G. Chernyi, S.A. Losev, S.O. Macheret, B.V. Potapkin, Physical and Chemical Processes in Gas Dynamics: Cross Sections and Rate Constants for Physical and Chemical Processes, Volume I (American Institute of Aeronautics and Astronautics, 2002)

  67. O. Skrebkov, S. Kostenko, A. Smirnov, Int. J. Hydrog. Energy 45, 3251 (2020)

    Google Scholar 

  68. A. Starik, A. Sharipov, N. Titova, Combust. Sci. Technol. 183, 75 (2010)

    Google Scholar 

  69. E. Josyula, WFd Bailey, C.J. Suchyta III, J. Thermophys. Heat Transf. 25, 34 (2011)

    Google Scholar 

  70. G. Colonna, L. Pietanza, G. D’Ammando, Chem. Phys. 398, 37 (2012)

  71. G. Colonna, L.D. Pietanza, A. Laricchiuta, Int. J. Heat Mass Transf. 156, 119916 (2020)

    Google Scholar 

  72. I. Kadochnikov, I. Arsentiev, Shock Waves 30, 491 (2020)

    ADS  Google Scholar 

  73. I.V. Adamovich, S.O. Macheret, J.W. Rich, C.E. Treanor, J. Thermophys. Heat Transf. 12, 57 (1998)

    Google Scholar 

  74. I. Armenise, F. Esposito, Chem. Phys. 398, 104 (2012)

    Google Scholar 

  75. J.D. Bender, P. Valentini, I. Nompelis, Y. Paukku, Z. Varga, D.G. Truhlar, T. Schwartzentruber, G.V. Candler, J. Chem. Phys. 143, 054304 (2015)

    ADS  Google Scholar 

  76. F. Esposito, M. Capitelli, Chem. Phys. Lett. 418, 581 (2006)

    ADS  Google Scholar 

  77. F. Esposito, C. Gorse, M. Capitelli, Chem. Phys. Lett. 303, 636 (1999)

    ADS  Google Scholar 

  78. A. Munafò, M. Panesi, R.L. Jaffe, G. Colonna, A. Bourdon, T.E. Magin, Eur. Phys. J. D 66(2012)

  79. D. Bose, G.V. Candler, J. Chem. Phys. 104, 2825 (1996)

    ADS  Google Scholar 

  80. F. Esposito, I. Armenise, J. Phys. Chem. A 121, 6211 (2017)

    Google Scholar 

  81. D. Bose, G.V. Candler, J. Chem. Phys. 107, 6136 (1997)

    ADS  Google Scholar 

  82. G.E. Streit, H.S. Johnston, J. Chem. Phys. 64, 95 (1976). https://doi.org/10.1063/1.431917

    Article  ADS  Google Scholar 

  83. J.A. Dodd, S.J. Lipson, W.A.M. Blumberg, J. Chem. Phys. 92, 3387 (1990). https://doi.org/10.1063/1.457849

    Article  ADS  Google Scholar 

  84. H. Teitelbaum, P. Aker, J. Sloan, Chem. Phys. 119, 79 (1988)

    Google Scholar 

  85. D.V. Shalashilin, A.V. Michtchenko, S.Y. Umanskii, Y.M. Gershenzon, J. Phys. Chem. 99, 11627 (1995)

    Google Scholar 

  86. S. Atahan, M.H. Alexander, J. Phys. Chem. A 110, 5436 (2006)

    Google Scholar 

  87. C. Martí, L. Pacifici, A. Laganà, C. Coletti, Chem. Phys. Lett. 674, 103 (2017)

    ADS  Google Scholar 

  88. A.J.C. Varandas, J. Brandão, M.R. Pastrana, J. Chem. Phys. 96, 5137 (1992)

    ADS  Google Scholar 

  89. H. Teitelbaum, A. Lifshitz, Phys. Chem. Chem. Phys. 2, 687 (2000)

    Google Scholar 

  90. M.M. Teixidor, A.J.C. Varandas, J. Chem. Phys. 142, 014309 (2015). https://doi.org/10.1063/1.4905292

    Article  ADS  Google Scholar 

  91. M. Capitelli, G. Colonna, G. D’Ammando, V. Laporta, A. Laricchiuta, Chem. Phys. 438, 31 (2014)

  92. G. Colonna, G. D’Ammando, L.D. Pietanza, Plasma Sources Sci. Technol. 25, 054001 (2016)

  93. G. D’Ammando, G. Colonna, M. Capitelli, A. Laricchiuta, Phys. Plasmas (1994-present) 22, 034501 (2015)

  94. G. Colonna, A. Laricchiuta, L.D. Pietanza, Plasma Phys. Controlled Fus. 62, 014003 (2019)

    ADS  Google Scholar 

  95. G. Colonna, M. Capitelli, S. DeBenedictis, C. Gorse, F. Paniccia, Contrib. Plasma Phys. 31, 575 (1991)

    ADS  Google Scholar 

  96. J. Warnatz, U. Maas, R.W. Dibble, Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. (4h edition, Springer, p. 378) (2006)

  97. I.N. Kosarev, N.L. Aleksandrov, S.V. Kindysheva, S.M. Starikovskaia, A.Yu. Starikovskii, Combust. Flame 156, 221–233 (2009)

    Google Scholar 

  98. Z. Yin, A. Montello, C.D. Carter, W.R. Lempert, I.V. Adamovich, Combust. Flame 160, 1594–1608 (2013)

    Google Scholar 

  99. T. Li, I.V. Adamovich, J.A. Sutton, Combust. Sci. Technol. 185, 990–998 (2013)

    Google Scholar 

  100. Z. Yin, Z. Eckert, I.V. Adamovich, W.R. Lempert, Proc. of AIAA SciTech, 52nd Aerospace Sciences (National Harbor, Maryland, AIAA-2014-1361.)

  101. S.A. Stepanyan, M.A. Boumehdi, G. Vanhove, P. Desgroux, S.M. Starikovskaia, Stepanyan S A, Boumehdi M A, Vanhove G, Desgroux P and Starikovskaia S M, Proceedings of 51st AIAA Aerospace Sciences Meeting 7–10 January 2013, Grapevine, Texas, AIAA-2013-1053

  102. M.A Boumehdi, S. Stepanyan, S. Starikovskaia, P. Desgroux and G. Vanhove,Proceedings of European Combustion Meeting 25–28 June (2013), Lund, Sweden

  103. M.A. Boumehdi, S. Stepanyan, P. Desgroux, G. Vanhove, S.M. Starikovskaia, Combust. Flame 162, 1336–1349 (2015)

    Google Scholar 

  104. N.B. Anikin, S.M. Starikovskaia, A.Yu. Starikovskii, Plasma Phys. Rep. 30, 1028–1042 (2004)

    ADS  Google Scholar 

  105. N.B. Anikin, S.M. Starikovskaia, A.Yu. Starikovskii, J. Phys. D Appl. Phys. 39, 3244–3252 (2006)

    ADS  Google Scholar 

  106. S.M. Starikovskaia, N.L. Aleksandrov, I.N. Kosarev, S.V. Kindysheva, Starikovskii A. Yu, High Energy Chem. 43(3), 213–218 (2009)

    Google Scholar 

  107. V. Belaia, Starikovskiy A. Yu, Proc. of AIAA SciTech, 52nd Aerospace Sciences Meeting 13–17 January 2014, National Harbor, Maryland, AIAA-2014-1181

  108. T. Ombrello, S.H. Won, Y. Ju, S. Williams, Combust. Flame 157, 1916 (2010)

    Google Scholar 

  109. T. Ombrello, S.H. Won, Y. Ju, S. Williams, Combust. Flame 157, 1906 (2010)

    Google Scholar 

  110. W. Sun, S.H. Won, Y. Ju, Combust. Flame 161(8), 2054–2063 (2014)

    Google Scholar 

  111. I.N. Kosarev, A.I. Pakhomov, S.V. Kindysheva, E.M. Anokhin, N.L. Aleksandrov, Plasma Sources Sci. Technol. 22, 045018 (2014)

    ADS  Google Scholar 

  112. M.S. Bak, H. Do, M.G. Mungal, M.A. Cappelli, Combust. Flame 159, 3128 (2012)

    Google Scholar 

  113. M.S. Bak, S.-K. Im, M.G. Mungal, M.A. Cappelli, Combust. Flame 160, 2396–2403 (2013)

    Google Scholar 

  114. A. Starikovskiy, A. Rakitin, G. Correale, A. Nikipelov, T. Urushihara, T. Shiraishi, Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Nashville, USA, 9—12 January (2012)

  115. D. Singleton, S.J. Pendleton, M.A. Gundersen, J. Phys. D Appl. Phys. 44, 022001 (2011)

    ADS  Google Scholar 

  116. S.J. Pendleton, S. Bowman, C. Carter, M.A. Gundersen, W. Lempert, J. Phys. D Appl. Phys. 46, 305202 (2013)

    Google Scholar 

  117. M.A Gundersen, D. Singleton, A. Kuthi, Y. Lin, J. Sanders, China Maritime Week, March (2012), Hong Kong

  118. http://www.fidtechnology.com

  119. M. Simeni Simeni, B. Goldberg, I. Gulko, K. Frederickson, I.V. Adamovich, J. Phys. D Appl. Phys. 51, 01LT01 (2018)

    Google Scholar 

  120. T.L. Chng, A. Brisset, P. Jeanney, S.M. Starikovskaia, I.V. Adamovich, P. Tardiveau, Plasma Sources Sci. Technol. 28, 09LT02 (2019)

    Google Scholar 

  121. B.M. Goldberg, S. Reuter, A. Dogariu, R.B. Miles, Opt. Lett. 44, 3853 (2109)

    Google Scholar 

  122. T.L. Chng, S.M. Starikovskaia, M.-C. Schanne-Klein, Plasma Sources Sci. Technol. 29, 125002 (2020)

    ADS  Google Scholar 

  123. Ak Patnaik, I.V. Adamovich, J.R. Gord, S. Roy, Plasma Sources Sci. Technol. 26, 103001 (2017)

    ADS  Google Scholar 

  124. N.L. Aleksandrov, S.V. Kindusheva, M.M. Nudnova, A.Yu. Starikovskii, J. Phys. D Appl. Phys. 43, 255201 (2010)

    ADS  Google Scholar 

  125. N.A. Popov, J. Phys. D Appl. Phys. 44, 285201 (2011)

    Google Scholar 

  126. D.Z. Pai, D.A. Lacoste, C.O. Laux, Plasma Sources Sci. Technol. 19, 065015 (2010)

    ADS  Google Scholar 

  127. M. Janda, Z. Machala, L. Dvonc, D. Lacoste, C.O. Laux, J. Phys. D Appl. Phys. 48, 035201 (2015)

    ADS  Google Scholar 

  128. R. Van der Horst, T. Verreycken, E. Van Veldhuizen, P. Bruggeman, J. Phys. D Appl. Phys. 45, 345201 (2012)

    Google Scholar 

  129. M. Janda, T. Hoder, A. Sarani, R. Brandenburg, Z. Machala, Plasma Sources Sci. Technol. 26, 055010 (2017)

    ADS  Google Scholar 

  130. T. Orrière, E. Moreau, D.Z. Pai, J. Phys. D Appl. Phys. 51, 494002 (2018)

    Google Scholar 

  131. N. Minesi, S.A. Stepanyan, P.B. Mariotto, G.D. Stancu, C.O. Laux, Plasma Sources Sci. Technol. 29, 085003 (2020)

    ADS  Google Scholar 

  132. T. Orriére, Confinement micrométrique de décharges pulsées nanosecondes dans l’air à la pression atmosphérique et effets électro-aérodynamiques Ph.D. Thesis University of Poitiers France, in French) (2018)

  133. A. Lo, A. Cessou, C. Lacour, B. Lecordier, P. Boubert, D. Xu, C. Laux, P. Vervisch, Plasma Sources Sci. Technol. 26, 045012 (2017)

    ADS  Google Scholar 

  134. H. Albrecht, W H. Bloss, W. Herden, R. Maly, D. Saggau, E. Wagner New aspects on spark ignition Technical Report No. 770853 SAE International (1977). https://doi.org/10.4271/770853

  135. S.A. Stepanyan, A.Yu. Starikovskiy, N.A. Popov, S.M. Starikovskaia, Plasma Sources Sci. Technol. 23, 045003 (2014)

    ADS  Google Scholar 

  136. S.A. Shcherbanev, Khomenko A. Yu, S.A. Stepanyan, N.A. Popov, S.M. Starikovskaia, Plasma Sources Sci. Tech. 26, 02LT01 (2017)

    Google Scholar 

  137. S.A. Shcherbanev, Ch. Ding, S.M. Starikovskaia, N.A. Popov, Plasma Sources Sci. Technol. 28, 065013 (2019)

    ADS  Google Scholar 

  138. D. Opaits, D. Roupassov, S. Starikovskaia, A. Starikovskii, I. Zavialov S. Saddoughi, Proceedings of 43rd AIAA Aerosp. Sci. Meeting Exhibit (Reno, NV, 10–13 January 2005) 1180

  139. Starikovskii A. Yu, A. Nikipelov, M. Nudnova, D. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009)

    ADS  Google Scholar 

  140. S. Leonov, D. Opaits, R. Miles, V. Soloviev, Phys. Plasmas 17, 113505 (2010)

    ADS  Google Scholar 

  141. C. Rethmel, J. Little, K. Takashima, A. Sinha, I. Adamovich, M. Samimy, Int. J. Flow Control 3, 213–232 (2011)

    Google Scholar 

  142. K. Bayoda, N. Benard, E. Moreau, J. Appl. Phys. 118, 063301 (2015)

    ADS  Google Scholar 

  143. S. Pancheshnyi, S. Starikovskaia, A.Yu. Starikovskii, Chem. Phys. 262, 349–357 (2000)

    Google Scholar 

  144. V. Soloviev, V. Krivtsov, J. Phys. D Appl. Phys. 42, 125208 (2009)

    ADS  Google Scholar 

  145. N.Y. Babaeva, D.V. Tereshonok, G.V. Naidis, Plasma Sources Sci. Technol. 25, 044008 (2016)

    ADS  Google Scholar 

  146. Y. Zhu, S. Shcherbanev, B. Baron, S. Starikovskaia, Plasma Sources Sci. Technol. 26, 125004 (2017)

    ADS  Google Scholar 

  147. S.A. Shcherbanev, N.A. Popov, S.M. Starikovskaia, Combust. Flame 176, 272–284 (2017)

    Google Scholar 

  148. Ch. Ding, Experimental study of plasma parameters in nanosecond surface dielectric barrier filamentary discharge (Ph.D. Thesis, Institut Polytechnique de Paris) (2021)

  149. Ch. Ding, A. Jean, S. Shcherbanev, I. Selivonin, I. Moralev, N. Popov, S. Starikovskaia, Proc. of AIAA Scitech 2020 Forum, 6-10 January 2020, Orlando, FL, AIAA-2020-1662

  150. X. Rao, K. Hemawan, I. Wichman, C. Carter, T. Grotjohn, J. Asmussen, T. Lee, Proc. Combust. Inst. 33, 3233–3240 (2011)

    Google Scholar 

  151. J.B. Schmidt, B.N. Ganguly, J. Phys. D Appl. Phys. 45, 045203 (2012)

    ADS  Google Scholar 

  152. D.A. Lacoste, D.A. Xu, J.P. Moeck, C.O. Laux, Proc. Combust. Inst. 34, 3259–3266 (2013)

    Google Scholar 

  153. D.A. Lacoste, J.P. Moeck, W.L. Roberts, S.H. Chung, M.S. Cha, Proc. Combust. Inst. 36, 4145–4153 (2017)

    Google Scholar 

  154. D.A. Lacoste, B.J. Lee, A. Satija, S. Krishna, S.A. Steinmetz, I. Alkhesho, O. Hazzaa, R.P. Lucht, M.S. Cha, W.L. Roberts, Combust. Sci. Technol. 189, 2012–2022 (2017)

    Google Scholar 

  155. K. Shinohara, N. Takada, K. Sasaki, J. Phys. D Appl. Phys. 42, 182008 (2009)

    ADS  Google Scholar 

  156. E.N. Volkov, V.N. Kornilov, L.P.H. de Goey, Proc. Combust. Inst. 34, 955–962 (2013)

    Google Scholar 

  157. J. Kuhl, G. Jovicic, L. Zigan, A. Leipertz, Proc. Combust. Inst. 34, 3303–3310 (2013)

    Google Scholar 

  158. Y. Xiong, M.S. Cha, S.H. Chung, Proc. Combust. Inst. 35, 3513–3520 (2015)

    Google Scholar 

  159. D.A. Lacoste, Y. Xiong, J.P. Moeck, S.H. Chung, W.L. Roberts, M.S. Cha, Proc. Combust. Inst. 36, 4183–4192 (2017)

    Google Scholar 

  160. H.Y. Li, P.H. Huang, Y.C. Chao, Combust. Sci. Technol. 188, 1831–1843 (2016)

    Google Scholar 

  161. D.G. Park, S.H. Chung, M.S. Cha, Combust. Flame 184, 246–248 (2017)

    Google Scholar 

  162. S. Zare, H.W. Lo, S. Roy, O. Askari, Energy 197, 117185 (2020)

    Google Scholar 

  163. M.K. Kim, S.H. Chung, H.H. Kim, Combust. Flame 159, 1151–1159 (2012)

    Google Scholar 

  164. J.B. Michael, T.L. Chng, R.B. Miles, Combust. Flame 160, 796–807 (2013)

    Google Scholar 

  165. W. Cui, Y.H. Ren, S.Q. Li, J. Propuls. Power 35, 190–200 (2019)

    Google Scholar 

  166. R. Feng, J. Li, Y. Wu, M. Jia, D. Jin, Aerosp. Sci. Technol. 99, 105752 (2020)

    Google Scholar 

  167. A. Sakhrieh, G. Lins, F. Dinkelacker, T. Hammer, A. Leipertz, D.W. Branston, Combust. Flame 143, 313–322 (2005)

    Google Scholar 

  168. A. Ata, J.S. Cowart, A. Vranos, B.M. Cetegen, Combust. Sci. Technol. 177, 1291–1304 (2005)

    Google Scholar 

  169. G.T. Kim, C.S. Yoo, S.H. Chung, J. Park, Combust. Flame 212, 403–414 (2020)

    Google Scholar 

  170. R. Feng, Y. Huang, J. Zhu, Z. Wang, M. Sun, H. Wang, Z. Cai, Expe. Therm. Fluid Sci. 120, 110248 (2021)

    Google Scholar 

  171. F. Di Sabatino, D.A. Lacoste, J. Phys. D Appl. Phys. 53, 355201 (2020)

    Google Scholar 

  172. I.I. Esakov, L.P. Grachev, K.V. Khodataev, V.A. Vinogradov, D.M. Van Wie, IEEE Trans. Plasma Sci. 34, 2497–2506 (2006)

    ADS  Google Scholar 

  173. W. Kim, H. Do, M.G. Mungal, M.A. Cappelli, Combust. Flame 153, 603–615 (2008)

    Google Scholar 

  174. D.A. Lacoste, J.P. Moeck, D. Durox, C.O. Laux, T. Schuller, J. Engineer, Gas Turbines Power 135, 101501 (2013)

    Google Scholar 

  175. W.W. Wu, G.H. Ni, Q.F. Lin, Q.J. Guo, Y.D. Meng, IEEE Trans. Plasma Sci. 43, 3979–3985 (2015)

    ADS  Google Scholar 

  176. R. Rajasegar, C.M. Mitsingas, E.K. Mayhew, S. Hammack, H. Do, T. Lee, IEEE Trans. Plasma Sci. 44, 39–48 (2016)

    ADS  Google Scholar 

  177. R. Feng, J. Li, Y. Wu, J.J. Zhu, X.L. Song, X.P. Li, Aerosp. Sci. Technol. 79, 145–153 (2018)

    Google Scholar 

  178. Q.L. Pham, D.A. Lacoste, C.O. Laux, IEEE Trans. Plasma Sci. 39, 2264–2265 (2011)

    ADS  Google Scholar 

  179. W. Kim, J. Cohen, Combust. Sci. Technol. (2019) https://doi.org/10.1080/00102202.2019.1676743

  180. F. Di Sabatino, T.F. Guiberti, J.P. Moeck, W.L. Roberts, D.A. Lacoste, J. Phys. D Appl. Phys. 54, 075208 (2021)

    ADS  Google Scholar 

  181. K. Sasaki, K. Shinohara, J. Phys. D Appl. Phys. 45, 455202 (2012)

    Google Scholar 

  182. W. Sun, S.H. Won, T. Ombrello, C. Carter, Y. Ju, Proc. Combust. Inst. 34, 847–855 (2013)

    Google Scholar 

  183. D.A. Lacoste, J.P. Moeck, C.O. Paschereit, C.O. Laux, J. Propuls. Power 29, 748–751 (2013)

    Google Scholar 

  184. A. Ehn, P. Petersson, J.J. Zhu, M. Alden, E.J.K. Nilsson, J. Larfeldt, A. Larsson, T. Hurtig, N. Zettervall, C. Fureby, Proc. Combust. Inst. 36, 4121–4128 (2017)

    Google Scholar 

  185. K. Zaima, K. Sasaki, Jpn. J. Appl. Phys. 53, 066202 (2014)

    ADS  Google Scholar 

  186. Y. Tang, Q. Yao, J. Zhuo, S. Li, Fuel 289, 119899 (2021)

    Google Scholar 

  187. R.A. Varella, J.C. Sagas, C.A. Martins, Fuel 184, 269–276 (2016)

    Google Scholar 

  188. B.S. Chen, A.L. Garner, S.P.M. Bane, Combust. Flame 207, 250–264 (2019)

    Google Scholar 

  189. J. Gao, C. Kong, J. Zhu, A. Ehn, T. Hurtig, Y. Tang, S. Chen, M. Alden, Z. Li, Proc. Combust. Inst. 37, 5629–5636 (2019)

    Google Scholar 

  190. H. Do, M.A. Cappelli, M.G. Mungal, Combust. Flame 157, 1783–1794 (2010)

    Google Scholar 

  191. S. Leonov, A. Houpt, S. Elliott, B. Hedlund, J. Propuls. Power 34, 499–509 (2018)

    Google Scholar 

  192. M.D.G. Evans, J.M. Bergthorson, S. Coulombe, J. Appl. Phys. 122, 173305 (2017)

    ADS  Google Scholar 

  193. G. Vignat, N. Minesi, P.R. Soundararajan, D. Durox, A. Renaud, V. Blanchard, C.O. Laux, S. Candel, Proc. Combust. Inst. 38 (2021) (in press)

  194. K.V. Savelkin, D.A. Yarantsev, I.V. Adamovich, S.B. Leonov, Combust. Flame 162, 825–835 (2015)

    Google Scholar 

  195. D.G. Park, S.H. Chung, M.S. Cha, Combust. Flame 168, 138–146 (2016)

    Google Scholar 

  196. A.B. Fialkov, Prog. Energy Combust. Sci. 23, 399–528 (1997)

    Google Scholar 

  197. J.B. Schmidt, S. Roy, W.D. Kulatilaka, I. Shkurenkov, I.V. Adamovich, W.R. Lempert, J.R. Gord, J. Phys. D Appl. Phys. 50, 015204 (2017)

    ADS  Google Scholar 

  198. P. Ding, M. Ruchkina, D. Del Cont-Bernard, A. Ehn, D.A. Lacoste, J. Bood, Opt. Lett. 44, 225477 (2019)

    ADS  Google Scholar 

  199. D. Del Cont-Bernard, M. Ruchkina, P. Ding, J. Bood, A. Ehn, D.A. Lacoste, Plamsa Sources. Sci. Technol. 29, 065011 (2020)

    ADS  Google Scholar 

  200. D. Del Cont-Bernard, T.F. Guiberti, D.A. Lacoste, Proc. Combust. Inst. 38, (2021) (in press)

  201. D.L. Rusterholtz, D.A. Lacoste, G.D. Stancu, D.Z. Pai, C.O. Laux, J. Phys. D Appl. Phys. 46, 464010 (2013)

    ADS  Google Scholar 

  202. D.A. Xu, D.A. Lacoste, D.L. Rusterholtz, P.-Q. Elias, G.D. Stancu, C.O. Laux, Appl. Phys. Lett. 99, 121502 (2011)

    ADS  Google Scholar 

  203. O. Bölke, D.A. Lacoste, J.P. Moeck, J. Phys. D Appl. Phys. 51, 305203 (2018)

    Google Scholar 

  204. R. Zitoun, D. Desbordes, Combust. Sci. Technol. 144, 93–114 (1999)

    Google Scholar 

  205. E. Wintenberger, J.E. Shepherd, J. Propuls. Power 22, 694–697 (2006)

    Google Scholar 

  206. S.M. Frolov, V. Aksenov, V. Ivanov, Int. J. Hydrog. Energy 40, 6970–6975 (2015)

    Google Scholar 

  207. B. Zhang, H.D. Ng, J.H.S. Lee, Shock Waves 22, 275–279 (2012)

    ADS  Google Scholar 

  208. B. Zhang, C. Bai, Fuel 117, 294–308 (2014)

    Google Scholar 

  209. J.H.S. Lee, R. Knystautas, C. Chan, Symp. (Int.) Combust. 20, 1663–1672 (1985)

    Google Scholar 

  210. G. Ciccarreli, S. Dorofeev, Progr. Energy. Combust. Sci. 34, 499–550 (2008)

    Google Scholar 

  211. S.M. Frolov, V.Y. Basevich, V.S. Aksenov, S.A. Polikhov, Shock Waves 14, 175–186 (2005)

    ADS  Google Scholar 

  212. D.H. Lieberman, J.E. Shepherd, F. Wang, J. Liu, M.A. Gundersen, Proc. 43rd AIAA Aerospce Sci. Meet. Exhibit, Reno, NV, USA, Jan. 10–13, (2005) AIAA 2005-1344

  213. V.P. Zhukov, AYu. Starikovskii, Combust. Explos. Shock Waves 42, 195–204 (2006)

    Google Scholar 

  214. C.A. Stevens, F.A. Pertl, J.L. Hoke, F.R. Schauer, J.E. Smith, Proc. IMechE 225, 1633–1640 (2011)

    Google Scholar 

  215. A.E. Rakitin, AYu. Starikovskii, Combust. Flame 155, 343–355 (2008)

    Google Scholar 

  216. A. Starikovskiy, N. Aleksandrov, A. Rakitin, Philo. Trans. R. Soc. A 370, 740–773 (2012)

    ADS  Google Scholar 

  217. J.K. Lefkowitz, P. Guo, T. Ombrello, S.H. Won, C.A. Stevens, J.L. Hoke, F. Schauer, Y.G. Ju, Combust. Flame 162, 2496–2507 (2015)

    Google Scholar 

  218. N. Lamoureux, N. Djebaili-Chaumeix, C.E. Paillard, J. Phys. IV 12, 445–452 (2002)

    Google Scholar 

  219. L.E. Bollinger, AIAA J. 2, 131–133 (1964)

    ADS  Google Scholar 

  220. S.M. Frolov, V.Y. Basevich, V.S. Aksenov, S.A. Polikhov, J. Propuls. Power 19, 573–580 (2003)

  221. J.A.T. Gray, D.A. Lacoste, Combust. Flame 199, 258–266 (2019)

    Google Scholar 

  222. S. Zhou, T. Shi, W. Nie, Int. J. Spray Combust. Dyn. 12, 1–8 (2020)

    Google Scholar 

  223. J.A.T. Gray, D.A. Lacoste, Proc. Combust. Inst. 38 (2021) in press

  224. W.A. Bone, R.P. Fraser, W.H. Wheeler, Philos. Trans. R. Soc. A 235, 53–68 (1935)

    Google Scholar 

  225. V. Kamenskihs, J.H.S. Lee, Combust. Flame 159, 2967–2973 (2012)

    Google Scholar 

  226. M.A. Cherif, S.A. Shcherbanev, S.M. Starikovskaia, P. Vidal, Combust. Flame 2017, 1–3 (2020)

    Google Scholar 

Download references

Acknowledgements

Work of Starikovskaia S M is partially supported by French - Russian international laboratory LIA KaPPA â “Kinetics and Physics of Pulsed Plasmas and their Afterglow,”“EP-DGA convention 2790,” “Interaction of detonation with low temperature plasma” and the French National Research Agency, ANR (ASPEN Project “Atomic Species Production via Electronically excited states in high eNergy density Plasmas”).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Gianpiero Colonna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikovskaia, S., Lacoste, D.A. & Colonna, G. Non-equilibrium plasma for ignition and combustion enhancement. Eur. Phys. J. D 75, 231 (2021). https://doi.org/10.1140/epjd/s10053-021-00240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00240-2

Navigation