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Abstract. We investigate twisted electrons with a well-defined orbital angular momentum, which have been
ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation,
we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of
linear and circularly polarised fields. In the case of linear fields, we demonstrate that the orbital angular
momentum of the twisted electron is determined by the magnetic quantum number of the initial bound
state. The condition for the circular field can be related to the famous ATI peaks, and provides a new
interpretation for this fundamental feature of photoelectron spectra. We find the length of the circular
pulse to be a vital factor in this selection rule and, employing an effective frequency, we show that the
photoelectron OAM emission spectra are sensitive to the parity of the number of laser cycles. This work
provides the basic theoretical framework with which to understand the OAM of a photoelectron undergoing
strong field ionisation.

1 Introduction

Since being first recognised in the classical context of
tides [1–3] vortex phenomena have held an iconic sta-
tus across a diverse range of disciplines [4–7]. Of par-
ticular interest are the quantum mechanical versions of
vortices, which can be found in a wide range of sys-
tems [8–12]. Current intense interest in phase vortices
follows the first experimental observations of this phe-
nomenon for photons [8] and unbound electrons [10]
(for reviews on vortices in electrons see [13–15]). The
unique topological properties of vortex states [15] ren-
der them fundamental in the study of structured wave
fields, and have led to the inception of whole research
areas, such as singular optics [16–19]. For instance, a
vortex state cannot transform to another by simple
deformation such as stretching and compressing, or the
addition of noise. Furthermore, at its centre along the
propagation axis, a vortex beam has a zero amplitude
and an ill-defined phase. Currents around singularities
imply that such states carry intrinsic orbital angular
momenta (OAM), and thus can be used to influence
the dynamical properties of physical systems [20,21].

a e-mail: andrew.maxwell@ucl.ac.uk (corresponding
author)

The study of vortices in attosecond physics has
great potential in controlling light and matter. In high-
harmonic generation (HHG) it has been shown that
optical vortices in the IR driving fields lead to opti-
cal vortices in the resulting UV light produced [22–36].
This has been exploited to allow a high degree of control
over the light. In one example, UV light has been pro-
duced exhibiting torus knot topology [34,35] by sophis-
ticated trefoil IR pulses, for which the orientation of
the trefoil varies with the azimuthal angle. In another
study [36], extreme UV (EUV) light was imparted with
time-varying OAM, leading to self-torque by employing
two time-delayed IR pulses with different OAM. This
was the first demonstration of self-torque in light [37]
and could aid in probing systems with naturally time-
varying OAM.

Work understanding the OAM of photoelectrons
emitted in attosecond processes is still in its infancy.
Initial studies include the exploration of high OAM val-
ues for quasi-relativistic field intensities [38] and tera-
hertz fields [39] as well as using the OAM in rescattering
to probe bound state structures [40]. The OAM has also
been studied indirectly via the coherent combination of
pairs of vortex states that lead to the interference vor-
tices [41–51], which occur for two counter rotating cir-
cularly polarised fields separated by a time delay. How-
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ever, ideas as advanced as knots or self-torque in elec-
tron vortices have not been explored. This can partly
be attributed to the difficulty in experimental imple-
mentation; for example, no measurement scheme has
been devised to detect the OAM of photoelectrons emit-
ted in strong-field experiments. Initial ideas on how to
achieve this have been suggested in our recent pub-
lication [51], using both interferometric schemes and
adapting existing methods [52] used in electron beams.
Such experimental development needs sufficient theo-
retical backing to guide the implementation and justify
the cost, which at present is lacking. In this study we
introduce a theoretical framework to derive analytical
conservation laws and understand the basic dynamics
of the OAM during strong field ionisation. Note in all
cases we consider the OAM of the electron but not that
of the laser fields. The OAM we refer to in this work
is associated with the OAM carried by free particles,
described by Bessel functions and is the eigenvalue of
L̂z, that is, the quantum magnetic number. The outgo-
ing photo electron wavepacket in strong-field ionisation
does not naturally form a beam, so the z-direction can
be arbitrarily chosen. Throughout this work we use the
convention chosen in Fig. 1.

We utilise the strong field approximation (SFA)
[53]—often considered the workhorse of strong field
physics—to describe the basic ionisation dynamics. The
SFA in the form used here [51,54,55] is an approx-
imation, which primarily neglects the effects of the
Coulomb potential in the continuum. The use of the
SFA, over a more accurate model, is justified by the
possibility of analytical solutions and the ease of inter-
preting the results. Thus, the SFA allows the basic laws
of the OAM to be derived for strong field ionisation.
Furthermore, we focus mostly on circularly polarised
light, where the Coulomb effects are less significant,
than those observed in linear polarisation [56]. In a
recent publication [51], we numerically computed OAM
distributions using the SFA, QProp [57,58] and the R-
matrix with time dependence method [59–61] for circu-
larly polarised fields and confirmed that the SFA was
able to qualitatively reproduce the key features found
in these two more accurate numerical methods. This
work differed from the present in that it focused on the
interference effects due to employing two time-delayed
counter-rotating circularly polarised IR fields. Further-
more, the OAM computations were performed numer-
ically without full derivation of the analytical expres-
sions and the SFA calculations employed a monochro-
matic field, whereas in this work we extend the model
to include a sin2 envelope.

The paper is structured as follows. In Sect. 2 key the-
oretical results of the SFA (Sect. 2.1) and vortex states
(Sect. 2.2) are given. Next, in Sect. 3 we incorporate the
OAM into the SFA, starting with expressions for a gen-
eral field (Sect. 3.2). Following this, we derive analytical
conditions for the cases of a linear field (Sect. 3.3) and
a monochromatic circular field; in the latter we do this
both without (Sect. 3.4) and with (Sect. 3.5) the use
of the saddle point approximation. In Sect. 4 numeri-

cal results are presented for a circular sin2 laser field.
Therein we derive an effective frequency to extend the
analytic condition for a monochromatic field to work
for the sin2 case. Finally, in Sect. 5 we present our con-
clusions.

2 Key results from the strong field
approximation and vortex states

In this section we provide some key results from the
SFA and for electron vortex states, necessary for under-
standing the OAM derivation. Throughout the article
we use atomic units unless otherwise stated. Both cylin-
drical (ê‖, ê⊥, êφ) and Cartesian (êx, êy, êz) coordinates
will be used in this article, they will always be aligned
such that ê‖ = ez and any radial quantity will be

given by e.g. r⊥ =
√

r2x + r2y. We will consider spe-
cific cases where the laser field polarisation is parallel
to ê‖ [linearly polarised] and in the xy-plane [circularly
polarised].

2.1 Key results from SFA

Within the SFA S-matrix formalism [54,62] the transi-
tion amplitude for direct strong field ionisation from the
bound state |ψ0(t′)〉 to a final continuum state |ψf (t)〉
is given by the following expression [54,62]

Mf = −i lim
t→∞

∫ t

−∞
dt′〈ψf (t)|Uv(t, t′)V |ψ0(t′)〉, (1)

where the time evolution is approximated by the Volkov
operator

Uv(t, t′) =

∫
d3pe

−i
2

∫ t
t′ (p+A(τ)2)dτ |p + A(t)〉〈p + A(t′)|.

(2)
Combining Eqs. (2) and (1) and taking A(t) = 0 we get
the following for the transition amplitude

Mf = lim
t→∞

∫
d3p′ e−iS(p,t)〈ψf |p′〉M(p) (3)

with

M(p) = −i

∫ ∞

−∞
dt′eiS(p,t′)d(p, t′), (4)

where

d(p, t′) = 〈p + A(t′)|V |ψ0〉 (5)

and S(p, t) and S(p, t′) are the upper and lower limit
of the semi-classical action, respectively, both given by

S(p, t) = Ipt +
1
2

∫ t

−∞
dτ(p + A(τ))2. (6)
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A plane wave momentum state is commonly used for
the final continuum state |ψf 〉 → |ψp〉, which leads to
〈ψf |p′〉 → 〈p|p′〉 = δ(p′ − p) and therefore Mf →
M(p), where Eq. (4) gives the definition of M(p). How-
ever, in this work, a Bessel beam vortex state will be
used as final continuum state instead of a plane wave.
This will enable the development of an analytical model
for the OAM of the outgoing photoelectron. In order to
proceed we will introduce some properties of the Bessel
beam.

2.2 Key results from electron vortex state

Vortex states are topologically distinct both from plane
waves and vortex states with a different orbital angu-
lar momentum l [15]; this means two vortex states
cannot be transformed into one another via continu-
ous deformations. At its centre along the propagation
axis, the vortex has a zero amplitude and undefined
phase. In order to enforce the single-valued wave func-
tion, a quantised phase factor eilφ is needed, where φ is
the azimuthal angle and l is a topological charge with
integer value known as the orbital angular momentum
(OAM). The general form of the Bessel beam electron-
vortex is [14]

〈r|ψl(t)〉 = NlJl(p⊥r⊥)eilφeip‖r‖e−iωt. (7)

Here, Nl is a normalisation factor and Jl(p⊥r⊥) is the
Bessel function of the first kind. Ignoring the time
dependence, the Fourier transform is

〈p′|ψl〉 =
i−leilφ′

2πp⊥
δ(p′

‖ − p‖)δ(p′
⊥ − p⊥), (8)

where (p‖, p⊥, φ) are the cylindrical coordinates of p.
Inserting this into Eq. (3) gives

Ml(p‖, p⊥, t)

=
il

2π

∫ π

−π

dφ′e−iS(p‖,p⊥,φ′,t)e−ilφ′
M(p‖, p⊥, φ′),

(9)

where M(p‖, p⊥, φ′) is the transition amplitude Eq. (5)
written in cylindrical coordinates, which have been used
as they are natural for vortex states. Now the vortex
state is incorporated into the SFA framework. Next, we
will compute more explicit expressions for the transition
amplitude.

3 Matrix element calculations

In this section, the transition matrix element will be
derived for a general laser field. We will examine the
specific cases of a linear field and a circular monochro-
matic field, as well as the saddle point approximation.

Fig. 1 Depiction of the two laser fields and the coordinate
system used throughout this article. The circularly polarised
field propagates along the z-axis and its electric field vec-
tor rotates in the xy-plane (marked by a square grid). In
contrast, the linearly polarised field propagates along the
x-axis and its electric field vector oscillates along the z/ê||
direction. The angle φ is defined to be in the xy-plane (i.e.
the angle about the z-axis) and starts from the x-axis. The
orbital angular momentum is defined to be around the z-axis
as marked on the figure by L̂z

3.1 Coordinate systems

In Fig. 1 the two laser fields considered in this work
are depicted. The circular field propagates along the z
or ê|| direction, while the linear field propagates along
the x direction. The angle relating to the final OAM of
the photoelectron is chosen to be fixed for both fields
around the z-axis, while its conjugate variable, the angle
φ, is marked on the figure. This convention will be used
throughout the article. Note that, for any vector v, the
notation v⊥ is used for the radial component in a cylin-
drical coordinate system, which is the projection of the
vector onto the xy-plane given by v⊥ =

√
v2

x + v2
y.

3.2 Matrix element calculations for a general field

In order to proceed we will collect φ dependent and
independent parts to analytically perform the integral
in Eq. (9). The upper limit of the action contains φ
independent terms that contribute only a phase and
thus may be neglected as well as the following φ depen-
dent term

p⊥(cos(φ)αx(t) + sin(φ)αy(t)), (10)

where α(t) =
∫ t

−∞ A(τ)dτ . As t → ∞ for a ‘well-
behaved’ pulse or monochromatic field this term will
vanish. For the case of sin2 pulses, which will be con-
sidered later, this holds for an N -cycle pulse, where N
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is an integer greater than one. To simplify matters we
will only consider such ‘well-behaved’ laser fields. Thus,
the upper limit of the action can be entirely neglected
here.

The lower limit of the action, which governs the
dynamics, can be split into two parts:

S(p‖, p⊥, φ, t′) = SA(p‖, p⊥, t′) + SB(p⊥, φ, t′),

where

SA(p‖, p⊥, t′)

=
(

Ip +
1
2
p2‖ +

1
2
p2⊥

)
t′ + p‖α‖(t′) +

1
2

∫
dt′A2(t′)

(11)

is independent of φ, and

SB(p⊥, φ, t′) = p⊥ (αx(t′) cos(φ) + αy(t′) sin(φ))

= p⊥α⊥(t′) sin(φ − ν(t′)), (12)

encodes the dependence on the momentum azimuth
angle φ. This dependence is in terms of the angle

ν(t′) = μ(t′) − π/2, (13)

where

μ(t′) = arctan(αy(t′)/αx(t′)), (14)

which is related to the rotation of the laser field and
magnitude

α⊥(t′) =
√

αx(t′)2 + αy(t′)2 (15)

of the field integral α(t′).
Finally, in order to remove the φ dependence from the

bound-state matrix element, d(p, t′) = 〈p + A(t′)|V |ψ0〉,
we decompose it into its Fourier series

d(p, t′) =
∑
m

eimφVm(p‖, p⊥, t′). (16)

If the bound state is that of an atomic target, then
the matrix element will have only a limited number of
nonzero relevant Fourier terms, and these will be easy
to compute numerically applying the fast Fourier trans-
form (FFT). The transition amplitude from Eq. (9) may
be written as

Ml(p‖, p⊥, t)

= −i
∑
m

∫ t

−∞
dt′eiSA(p‖,p⊥,,t′)Vm(p‖, p⊥, t′)Iφ

l (p⊥, t′),

(17)

where Iφ
l (p⊥, t′) contains the φ integral and correspond-

ing terms and is given by

Iφ
l (p⊥, t′) =

il

2π

∫ π

−π

dφ′e−i(l−m)φ′
eip⊥α⊥(t′) sin[φ′−ν(t′)]

= ile−i(l−m)ν(t′)Jl−m(p⊥α⊥(t′)). (18)

Now the full transition amplitude can be written as

Ml(p‖, p⊥) = il−1
∑
m

∫ ∞

−∞
dt′eiSl−m(p‖,p⊥,t′)

Vm(p‖, p⊥, t′)Jl−m(p⊥α⊥(t′)), (19)

where

Sl(p‖, p⊥, t′) =
(

Ip +
1
2
p2‖ +

1
2
p2⊥

)
t′ − lν(t′)

+ p‖α‖(t′) +
1
2

∫
dt′A2(t′). (20)

Note that the OAM l only appears in the action coupled
with ν(t′), which mediates interaction of the laser field
with the OAM of the electron. The time-varying ‘angle’
ν(t′) can be interpreted as the dynamical rotational
action of the field on the OAM of the photoelectron.
For a monochromatic field, we will see that ν(t′) = ωt.
We can rewrite ν(t′) in terms of its derivative to gain
more insight

ν′(t′) =
(α(t′) × A(t′)) · ê‖

α⊥(t′)2
. (21)

This makes the rotational nature and link to the spin
of the field [63] more apparent. We will now examine
a few special cases that will significantly simplify the
transition amplitude.

3.3 Matrix element calculations for a linear field

In this section we will consider a laser field, which only
has components in the ê‖ direction in the cylindrical
coordinate system (i.e. perpendicular to the xy-plane
see, Fig. 1 for more details). Thus, the field has no φ
dependence and only SA(p, θp, t, t

′) contributes to the
action. Furthermore, given that α⊥(t′) → 0, the Bessel
function will become a Kronecker delta

Jl−m(p⊥α⊥(t′)) → δlm,

and this can be demonstrated by re-evaluating Eq. (18)

I linearφ =
1
2π

∫ π

−π

e−i(m−l)φ′
dφ′ = δl,m. (22)

This is a selection rule, enforcing l = m, given by the
symmetry of the problem. Substituting this back into
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the transition amplitude leaves

Ml(p‖, p⊥, ) = il−1

∫ ∞

−∞
dt′eiSA(p‖,p⊥,t′)Vl(p‖, p⊥, t′).

(23)
The selection rule comes from the exponential factor of
the bound state and OAM of the free electron, which
indicates that there will be a one-to-one correspondence
between the two. Thus, if there is only one Fourier
term m = m0 in Eq. (16), the OAM of the photoelec-
tron will be l = m0. Aside from this conservation of
angular momentum, the form of the OAM distribution
is unchanged from the original SFA formalism for the
plane wave momentum state.

3.4 Matrix element calculations for a circular field

In this section we turn to the OAM transition amplitude
for a monochromatic circular field, where there is now
a φ dependence in the semi-classical action. The form
of vector potential for a circular monochromatic field is
given by

A(t) = −√
2Up (cos(ωt)ex + sin(ωt)ey) , (24)

for more details on the orientation of the field see Fig.
1. For this field in Eq. (19) α⊥(t′) =

√
2Up/ω and

ν(t′) = ωt′. Thus, the action from Eq. (20) becomes
linear in t′ such that

Sl−m(p‖, p⊥, t′) = χl−m(p‖, p⊥)t′, (25)

where

χl−m(p‖, p⊥) = Ip + Up +
1
2
(p2‖ + p2⊥) − (l − m)ω.

(26)

The transition amplitude is then

Ml(p‖, p⊥) = il−1
∑
m

Jl−m

(
p⊥

√
2Up/ω

)

×
∫ ∞

−∞
dt′eiχl−m(p‖,p⊥)t′

Vm(p‖, p⊥, t′).

(27)

The integral acts to Fourier transform the prefactor
term Ṽp0 to give

Ml(p‖, p⊥) = il−1
∑
m

Jl−m

(
p⊥

√
2Up/ω

)

× V̂m(p‖, p⊥, χl−m) (28)

where V̂m(p‖, p⊥, χl−m) is the Fourier transform of
Vm(p‖, p⊥, t′) with the frequency χl−m(p‖, p⊥).

To further simplify the problem we will now con-
sider the case with a very simple bound state, where

the matrix elements have only one Fourier series term
for m = 0, as would be the case for a simple s-state
or the bound state for a zero range potential. In the
example of a zero range potential [64] the matrix ele-
ment of the bound state is given simply by a constant

dependent on the ionisation potential V0 =
√

2π
√

2Ip.
Now Eq. (27) becomes

Ml(p‖, p⊥) = 2πV0i
l−1Jl−m

(
p⊥

√
2Up/ω

)

× δ
(
χl−m(p‖, p⊥)

)
. (29)

Thus, for the case of monochromatic field with a simple
bound state we arrive at another conservation equation

Ip + Up +
1
2
(p2‖ + p2⊥) − (l − m)ω = 0. (30)

This is directly related to the semi-classical condition
for ATI peaks [65], which can be interpreted forming
due to additional photons absorbed by the photoelec-
tron in the continuum, beyond that required for ioni-
sation. In this case, however, each ATI peak will corre-
spond to a different value of OAM, which will be shifted
by the quantum magnetic number m. This has interest-
ing implications as it suggests that different values of
the OAM will be localised to specific energy regions in
photoelectron emission spectra for ionisation via circu-
larly polarised light. It is this idea that was exploited
to produce interference vortices in our recent work [51].

3.5 Exploiting the saddle point approximation

In this subsection we discuss an alternative way to com-
pute the OAM-SFA transition amplitude. In order to
compute the OAM transition amplitude we employ the
saddle point approximation for Eq. (5) and then analyt-
ically perform the integral over φ. Applying the saddle
point approximation and ignoring the bound state pref-
actor Eq. (5) becomes

M(p‖, p⊥, φ) =
N−1∑
s=0

√
2πi

∂2S/∂t2|t=ts
exp

[
iS(p‖, p⊥, φ, ts)

]
,

(31)

where N is the number of laser cycle considered and ts
is given by

(p + A(ts))
2 = −2Ip. (32)

For a general field ts will depend on φ in a nontrivial
way so the integral over φ cannot be performed analyt-
ically. However, for a monochromatic circular field the
dependence on φ is linear and we can write ts in terms
of t′s, which is independent of φ

ωts(p‖, p⊥, φ) = φ + ωt′s(p‖, p⊥) (mod 2π).
(33)
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Substituting this into the action leads to

S(p‖, p⊥, φ, t′s) =
(

Ip + Up +
1
2
(p2‖ + p2⊥)

)(
φ

ω
+ t′s

)

−
√

2Up

ω
p⊥ sin (ωt′s) (34)

= S(p‖, p⊥, 0, t′s)

+
(

Ip + Up +
1
2
(p2‖ + p2⊥)

)
φ

ω
. (35)

Thus, substituting the action and transition amplitude
into Eq. (19) leads to the expression

Ml(p‖, p⊥) =
N−1∑
s=0

√
2πi

∂2S/∂t′2s
exp(iS(p‖, p⊥, 0, t′s))

× 1
2π

∫ π

−π

dφ′ exp

[
i(Ip + Up + 1/2p2)

× (φ′/ω) − iφ′l

]
(36)

=
N−1∑
s=0

√
2πi

∂2S/∂t′2s
exp(iS(p‖, p⊥, 0, t′s))

× sinc
[
(Ip + Up + 1/2p2 − ωl)(π/ω)

]
.

(37)

Note, the prefactor in the square root can be deter-
mined to be independent of φ′, thus it is outside of the
φ′ integral. The sum leads to the contribution of one
identical ionisation event per laser cycle, due to the field
being monochromatic. Thus, the sum can be evaluated
analytically to give the following

Ml(p‖, p⊥) = ΩN (p‖, p⊥)

√
2πi

∂2S/∂t′2s
exp(iS(p‖, p⊥, 0, t′0))

× sinc
[
χlπ

ω

]
, (38)

where t′0 denotes the solution in the first laser cycle and

ΩN (p‖, p⊥) =
N−1∑
n=0

exp (2πinχ0/ω)

=
exp [2πiNχ0/ω] − 1
exp [2πiχ0/ω] − 1

(39)

as previously demonstrated in [66,67]. In the limit N →
∞ ΩN (p‖, p⊥) becomes a Dirac comb

lim
N→∞

ΩN (p‖, p⊥) =
∞∑

n=0

δ (χ0 − nω) . (40)

The Dirac delta functions lead to the following replace-
ment in the argument of the sinc function

sinc
[χlπ

ω

]
→ sinc [π(n − l)] = δnl. (41)

Thus, this leads to

Ml(p‖, p⊥) =

√
2πi

∂2S/∂t′2s
exp(iS(p‖, p⊥, 0, t′0))

×δ
(
χl(p‖, p⊥)

)
, (42)

which gives the same condition as Eq. (30) but has dif-
ferent prefactors due to the saddle point approximation.
Taking N as a finite fixed value we are able to plot the
result, which can be considered a rough approximation
to employing a laser pulse of N cycles, which has been
done in Fig. 2. The plot is over energy to make clear
that each peak is separated with equal energy spac-
ing as dictated by Eq. (30). As the number of laser
cycles goes from 2 to 8 the OAM peaks get sharper,
approaching the delta functions predicted by Eq. (29).
The bound state prefactor is neglected in Fig. 2, but
it would be expected that including this should shift
the peak by the value of the magnetic quantum num-
ber. This behaviour was in fact observed in [51]. The
analytical formalism we have derived is able to give the
core properties of the OAM for strong field ionisation;
however, in an actual experiment the laser will have a
pulse envelope and thus a distribution of frequencies.
In the next section, using numerical computations, we
explore the effect this has on the OAM distribution.

4 Numerical computations

In this section we will examine the effect of a pulse
envelope on the OAM distributions. We will employ 2-
cycle, 4-cycle and 8-cycle laser pulses as in the previous
section. Employing a sin2 envelope we set the vector
potential to be

A(t) = −√
2Up sin

(
ωt

2N

)2

(cos(ωt)ex + sin(ωt)ey) .

(43)
The numerical computation of OAM distributions
closely follows the methodology of the previous sec-
tion, using the saddle point approximation to compute
the plane-wave transition amplitude [as in Eq. (31)]
and then numerically computing the φ integral from
Eq. (19). The φ integral can be computed very effi-
ciently using the FFT algorithm. The saddle point solu-
tions are computed using Eq. (32). The solutions can
also be found very efficiently by transforming the equa-
tion to a polynomial of order 2N + 2 and finding the
roots, as outlined in [68]. This means there will be N +1
valid solutions, see Fig. 3.
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Fig. 2 The result of Eq. (38) is plotted for 2 (a), 4 (b)
and 8 (c) ionisation events (given by N). The laser field
intensity employed is I = 2 × 1014 W/cm2 and a wave-
length λ = 800 nm, corresponding to Up = 0.44 a.u. and
ω = 0.057 a.u. for the ponderomotive energy and angular
frequency, respectively. The distributions are plotted versus
energy in order to easily see condition (30), which is marked
by the vertical dashed lines on each figure and has constant
spacing in energy. The OAM l values 20–37 are included as
shown in the figure legend. The bound state prefactor has
been neglected in the calculation

In Fig. 3 the 2-cycle, 4-cycle and 8-cycle results are
shown. In the first column the laser field is plotted with
the real parts of the times of ionisation indicated by the
vertical dashed lines. In the second column the imag-
inary parts of the ionisation times are plotted versus
the radial momentum coordinate. The minima of these
times (see the dotted line in Fig. 4) is a predictor for
where the momentum distribution will be maximum.
The momentum distributions are plotted in the final
row for each laser pulse. As suggested by the imagi-
nary part of the times, the peak of these distributions
is away from the centre forming doughnut shapes. Inter-
ference between different paths can be seen as faint
circular fringes. The following references [68–70] can
give some further insight into these solutions and the
method. Such distributions bear some similarity with
the attoclock [71–78], where an elliptical nearly circu-
lar field is used to relate the electron emission angle to
the tunnelling time. In this work we are relating the
photoelectron OAM to the emission energy, which are
the conjugate variables of angle and time, respectively.

Fig. 3 The laser pulse (first row), imaginary parts of ion-
isation times (second row) and momentum distributions
(final row). In the first row the 2-cycle, 4-cycle and 8-cycle
laser fields are plotted in a–c, respectively. The x [y] com-
ponent of the laser field is plotted by the blue [orange] line.
The real part of the times of ionisation are given by the ver-
tical dashed lines and coloured spots are used to mark where
this intersects with the x component of the laser field. These
times are found by solving Eq. (32). The imaginary parts
of the solutions are plotted in the middle row, d–f versus
the perpendicular momentum coordinate p⊥, the colours of
each line corresponds to the colour of the spots in the pan-
els above, the real parts are also explicitly given (in units
of laser cycles) on the right-hand side of each panel. The
minima of the imaginary part of the times of ionisation are
marked by dotted lines. The photoelectron momentum dis-
tributions are plotted along the bottom row (h–i), for the
momentum components in xy-plane and pz = 0.1 a.u., com-
puted using Eq. (31) with saddle point from Eq. (32) for
each laser pulse considered

In Fig. 4 the OAM distributions for the three laser
pulses used in Fig. 3 are shown. The distribution of
frequencies in the sin2 pulse means that we should not
expect Eq. (30) to hold. In panel (a), the OAM distribu-
tion is plotted for a 2-cycle pulse. There are still specific
OAM peaks in each energy region; however now they
significantly overlap. Furthermore, the central peak at
around 0.6 a.u. corresponds to l = 31 instead of l = 27
as in the monochromatic case. This is because the spac-
ing between the peaks is reduced. The dot-dashed lines
in Fig. 4a use a spacing of 3

4ω. This closely matches
most of the peaks, but for increasing l above l = 31,
the spacing drifts to higher values, while for decreas-
ing l below that of l = 31 the spacing drifts to lower
values. For the longer pulses, 4 and 8 cycles, the distri-
butions move closer to the monochromatic case, with
the l = 27 peak moving towards its previous position of
0.6 a.u. and the spacing between peaks getting closer to
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Fig. 4 The OAM distributions are shown for a 2-, 4- and
8- sin2 laser pulse (a–c), respectively. The peak intensity,
wavelength and ionisation potential is the same as that
used in Fig. 2. The bound state prefactors are neglected.
The dot-dashed lines correspond to the condition Eq. (30)
with the following effective frequencies used 3/4ω, 15/16ω
and 63/54ω, for (a–c), respectively. The condition has been
slightly shifted in each case so that the central peak lines
up with the corresponding l value. The OAM values utilised
are from l = 20 to l = 40

ω. However, the spacing is still below this, with spacing
of 15

16ω and 63
64ω being used for the dot-dashed lines for

4 and 8 cycles, respectively. Note that in all cases as
well as altering the frequency in condition Eq. (30) a
small shift was required to align the dot dashed lines
to the correct central peak (reducing for longer pulses),
see the caption of Fig. 4 for more details.

A clear pattern is visible in the spacing of the OAM
distribution of 2-, 4- and 8-cycle pulses and it is possible
to analytically derive this spacing dependence. In the
monochromatic case the spacing between OAM peaks
is given by ν(t′) = ωt′, which leads to an ω spacing in
energy in the condition Eq. (30). There is not such a
simple relation for ν(t′) when employing a sin2 pulse,
but through a Taylor expansion we can derive such an
expression. A first-order Taylor expansion about the
peak of the pulse (t = πN/ω) gives ν(t′) = ω∗

N t′ in
terms of an effective frequency ω∗

N , dependent on the
number of laser cycles. Note a constant term has been
discarded as this only contributes an overall phase and
does not affect the OAM peak separation. The effective

Fig. 5 The same as Fig. 4 except 3-, 5- and 9- cycle sin2

laser pulses have been employed. The dot-dashed lines use
the carrier frequency for the spacing and are again slightly
shifted so that Eq. (30) to match the central peak

frequency can be calculated to be

ω∗
N = ν′(πN/ω) =

{(
1 − 1

N2

)
ω, ifN is even

ω otherwise
,

(44)

which matches the peak spacing seen in 2-cycle, 4-cycle
and 8-cycle pulse in Fig. 4.

It is interesting to note that, if the number of cycles
N is odd, the peaks remain separated at the carrier fre-
quency. This is exemplified in Fig. 5, which shows the
OAM distributions for 3-cycle, 5-cycle and 9-cycle laser
pulses. The dot-dashed lines in this figure are all sep-
arated by the carrier frequency and the corresponding
peaks in the distributions line up with this well. It is
possible to see some drift away from the central peak
in (a), as the spacing is slightly smaller than the carrier
frequency. These shifts are simply because the condi-
tion, although accurate, it is no longer exact and thus
there is a increasing drift for higher l values.

Beyond the spacing between peaks there are further
differences between Figs. 4 and 5. Namely, in Fig. 4 con-
siderable secondary peaks can be observed, which for in
cases where the OAM peaks are low [see l = 23 in (c)]
the secondary peaks can be nearly as high as the pri-
mary peak [or even higher in extreme cases e.g. l = 22
in (c)]. However, the secondary peaks always occur in
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the regions where there is a more dominant OAM peak
corresponding to another l value. In contrast, for an
odd number of cycles, Fig. 5, the secondary peaks are
considerably lower, not playing much of a role at all.
These features suggest that, if a clean well separated
(in energy) OAM distribution is required, it would be
much better to utilise an odd number of laser cycles in
the laser pulse envelope. Furthermore, in the even-cycle
case the peaks are slightly asymmetric, with a longer
tail on one side than the other, while for an odd num-
ber of cycles the peaks are symmetric. These differences
suggest one may be able use the OAM of the photoelec-
trons to detect if the laser field had a closer to odd or
even number of cycles. However, additional effects such
as the intensity variation over the laser focal volume
(see Ref. [79] for an example) would need to be consid-
ered first, and as previously stated, the measurement of
the OAM of photoelectrons in strong field experiment
is an open problem [51,52].

5 Conclusions

In this study we have developed a new version of
the strong field approximation (SFA) to explore the
orbital angular momentum of photoelectrons undergo-
ing strong field ionisation. Employing this model we are
able to derive analytic conditions relating to selection
rules/conservation laws about the system. In the case
of a linear field we demonstrate that the photoelectron
OAM is determined by the magnetic quantum number
of the initial bound state, while for a circular field we
show that a range of OAMs are possible, which will
occur in well-defined energy regions. We derive an ana-
lytic condition that relates their position to the ATI
peaks. Computations using a sin2 laser pulse demon-
strate that this condition continues to be accurate even
for very short pulses but the separation of the peaks is
now described by an analytically derived effective fre-
quency as opposed to the carrier frequency of the laser
field. We find that employing an odd or even number
of laser cycles has a marked effect on the OAM distri-
butions, leading to two classes of effective frequency for
even and odd pulses.

The present work is an interesting example of how
the ellipticity and time profile of the field add dynamic
shifts ν(t′) to angular variables intrinsic to the target,
such as the OAM of the electron. This effect bears some
similarity with previous work on the angular properties
of the photoelectrons. In one example, the tunnelling
angle, derived in [80], was used to show the preferential
tunnel ionisation of ‘counter-rotating’ electrons with
circularly polarised fields. An electron’s angle of return
also leaves imprints in HHG spectra [81,82]. These
angular shifts were incorporated in a purely structural
two-centre interference condition for HHG in diatomic
molecules [82], and could be made visible by exploiting
macroscopic propagation [83]. A key difference is that
these articles computed angles related to the velocity
of the electron, whereas in the present work ν(t′) is

related only to the rotation of the field and represents
the interaction of the laser field with the OAM of the
electron. It could be said to be the ‘stirring’ action of
the field upon the electron at the moment of ionisation.

The method proposed here is general and could
be extended to initial states with arbitrary angular
momentum and other types of tailored fields. However,
an open question is the role of the residual binding
potential. In [51] good agreement was found between
the SFA and the TDSE solvers Qprop and RMT but
the longer wavelengths used in this study may lead
to more significant Coulomb effects. This question has
been addressed in the attoclock setup, which (as previ-
ously stated) deals with the conjugate variables of the
emission angle and corresponding ionisation time. In
this setting the Coulomb potential has been shown to
shift the photoelectron emission angle (see e.g. [76]),
which may have a profound effect on the interpreta-
tion of the tunnelling time (see [78,84] for reviews on
the attoclock). Thus, it should be expected that the
Coulomb potential will also shift the OAM of the pho-
toelectron. This may be addressed by incorporating
the OAM into SFA-like models which account for the
binding potential, such as the Coulomb quantum-orbit
strong field approximation [56,66,85] as well as per-
forming comparison with TDSE solvers.

The OAM decomposition of the final photoelectron
wavepacket presented here reveals the angular momen-
tum content along a chosen direction, associated with
the OAM that may be carried by freely propagating
particles. The electron wavepacket does not form a
beam. Therefore, the wavepacket cannot be envisaged
as single vortex beam propagating along the OAM axis
but rather a superposition of many different Bessel
beam vortex states with different OAMs. This can be
exploited either in strong field measurement [51,52],
where such distributions over OAM may reveal unique
properties about the target system, or alternatively
could be used to produce a custom electron vortex
beam [15]. Such as scheme could exploit the relationship
between the ATI peaks and the OAM to filter photo-
electrons from a specific ATI peak in order to select a
single OAM.

Another very important question is: How about other
types of fields, for more complex vortices? The response
of matter to structured laser fields is a central subject
of intense laser-matter physics, and is inevitably related
to the OAM of matter. Recently, a novel pump-probe
scheme incorporating OAM was theoretically demon-
strated using a vortex IR beam and XUV pulse allowing
for time-resolved photoionisation [86], while DeNinno
[87] demonstrated experimentally that a free electron
matter wave, produced by an XUV pulse, is sensitive
to a vortex IR beam. Similarly, angle-resolved attosec-
ond streaking of twisted attosecond pulses has been
recently proposed [88]. In a condensed matter context,
it was shown recently that THz laser pulses with cir-
cular polarisation induce transient Chern insulator in
graphene [89]. Similarly, linearly polarised pulses with
OAM induce non-uniform Chern insulators [90]. All
these examples clearly illustrates that we are entering
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an era of OAM and more complex textures in laser-
matter physics.
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