Skip to main content
Log in

Evaluating the performance of a refrigerator by an external system using entanglement

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose a model of a quantum thermal refrigeration machine interacting with an external atom via an entanglement phenomenon. The machine is formed by three qubits of two-level, where each one interacts locally with its proper reservoir at different temperatures. The second qubit of the refrigerator and the external qubit are initially prepared in an entangled state. The effect of the quantum refrigerator on the entanglement of the final atomic state is studied. It is shown that the survival of the entanglement of the atomic system (Qubits 2 and 4) depends on the temperature of the second reservoir. The heat flow from the cold bath (cooling power) to the hot bath is discussed, where we prove that the refrigeration may be enhanced by the energy coming from the entangled external qubit. Indeed, it is shown that the enhancement of cooling power by increasing the degree of entanglement.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the informations are mentioned in the paper.].

References

  1. J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics (Springer, 2010)

  2. F. Binder, L. A. Correa, C. Gogolin, J. Anders, G. Adesso, eds. Thermodynamics in the quantum regime: Fundamental Theories of Physics. Springer. 195 0168-1222 (2019)

  3. S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016)

    Article  ADS  Google Scholar 

  4. R. Alicki, The Quantum Open System as a Model of the Heat Engine. J. Phys. A. 12, L103 (1979)

    Article  ADS  Google Scholar 

  5. A. del Campo, J. Goold, M. Paternostro, More Bang for Your Buck: Super-Adiabatic Quantum Engines. Sci. Rep. 4, 6208 (2014)

    Article  ADS  Google Scholar 

  6. A.E. Allahverdyan, K. Hovhannisyan, G. Mahler, Optimal Refrigerator. Phys. Rev. E 81, 051129 (2010)

  7. A. Levy, R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012)

  8. H.E.D. Scovil, E.O. Schulz-DuBois, Three-level masers as heat engines Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  9. J.E. Geusic, E O S-D. Bois, R W. De Grasse, H.E.D. Scovil, Three-level spin refrigeration and maser action at 1500 mc/sec. J. Appl. Phys. 30 1113–4 (1959)

  10. R. Kosloff, Y. Rezek, The quantum harmonic Otto cycle. Entropy 19, 136 (2017)

    Article  ADS  Google Scholar 

  11. R. Kosloff, A. Levy, Quantum heat engines and refrigerators: continuous devices Annu. Rev. Phys. Chem. 65, 365–93 (2014)

    Article  ADS  Google Scholar 

  12. M.H.B. Chakour, A.E. Allati, Y. Hassouni, Entangled quantum refrigerator based on two anisotropic spin-1/2 Heisenberg XYZ chain with Dzyaloshinskii-Moriya interaction. Eur. Phys. J. D 75, 42 (2021)

    Article  ADS  Google Scholar 

  13. Y. Khlifi, A. El Allati, A. Salah, Y. Hassouni, Int. J. Mod. Phys. B 34, 2050212 (2020)

    Article  ADS  Google Scholar 

  14. J. Ronagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 15, 325–9 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. K.Y. Tan, M. Partanen, R.E. Lake, J. Govenius, S. Masuda, M. Mottonen, Quantum-circuit refrigerator. Nat. Commun. 8, 15189 (2017)

    Article  ADS  Google Scholar 

  16. G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, Quantum absorption refrigerator with trapped ions. Nat. Commun. 10, 202 (2019)

    Article  ADS  Google Scholar 

  17. G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, Quantum absorption refrigerator with trapped ions. Nat. Commun. 10, 202 (2019)

    Article  ADS  Google Scholar 

  18. N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014)

  19. H.E. Xian, H.E. JiZhou, Thermal entangled four-level quantum Otto heat engine. Sci. China Phys. Mech. Astron. 55, 1751–1756 (2012)

    Article  Google Scholar 

  20. N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010)

  21. R. Silva, G. Manzano, P. Skrzypczyk, N. Brunner, Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys. Rev. E 94, 032120 (2016)

  22. N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85, 051117 (2012)

  23. N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014)

  24. L.A. Correa, J.P. Palao, G. Adesso, D. Alonso. Performance bound for quantum absorption refrigerators. Phys. Rev. E 87 042131 (2013)

  25. T. Sagawa, M. Ueda, Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009)

  26. S. Deffner, C. Jarzynski, Information processing and the second law of thermodynamics: an inclusive. Hamiltonian approach. Phys. Rev. X 3, 041003 (2013)

  27. G. Manzano, G.-L. Giorgi, R. Fazio, R. Zambrini, Boosting the performance of small autonomous refrigerators via common environmental effects. New J. Phys. 21, 123026 (2019)

  28. P. Skrzypczyk, N. Brunner, N. Linden, S. Popescu. The smallest refrigerators can reach maximal efficiency. J. Phys. A: Math. Theor 44, 492002 (2011)

  29. K. Karl, A. Böhm, J.D. Dollard, W.H. Wootters, States, Effect, and Operations: Fundamental Notions in Quantum Theory. (Springer, Berlin, 1983)

  30. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  31. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  32. B. Bellomo, R. Lo Franco, G. Compagno, Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev.A.77, 032342 (2018)

Download references

Acknowledgements

The authors would like to thank the ICTP-Trieste, where part of the work was carried out, for its hospitality and support.

Author information

Authors and Affiliations

Authors

Contributions

The tasks of our group in this work are structured as follows: the calculations are done by the author YK, while the author AEA discusses and interprets the different results. However, writing and revision of the paper was carried out by the whole group YK et al.

Corresponding author

Correspondence to Y. Khlifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlifi, Y., El Allati, A., Salah, A. et al. Evaluating the performance of a refrigerator by an external system using entanglement. Eur. Phys. J. D 75, 195 (2021). https://doi.org/10.1140/epjd/s10053-021-00211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00211-7

Navigation