Skip to main content
Log in

Stark-Lorentz profiles of spectral lines of atoms and polar molecules in magnetized turbulent plasmas: analytical results

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present analytical results for spectral line profiles of atoms and polar molecules in magnetized turbulent plasmas for the situation where the ion microfield is much smaller than both the field of the Low-frequency Electrostatic Turbulence (LET), developed along the magnetic field B, and the Lorentz field Bv/c. This situation arises, e.g., in magnetic fusion devices, solar plasmas, and white dwarfs plasmas. We obtain explicit analytical results for the line profiles in the universal form valid for any ratio p of the field of the LET and the Lorentz field and for any detuning from the unperturbed position of the spectral line. We find that the dependence of the line intensity on the ratio p at a fixed detuning is non-monotonic: as this ratio increases, the line intensity first increases, then reaches a maximum, and then decreases. For hydrogenic atoms or ions, we also provide the corresponding theoretical Stark-Lorentz profiles for the Lyman-beta, Lyman-delta, and Balmer-beta lines. From an experimental profile of the spectral line of an atom, an ion, or a polar molecule, the employment of our analytical results for the line profiles allows determining both the root-mean-square field \(F_{0}\) of the LET and the product \({\textit{BT}}^{1/2}\), where B is the magnetic field and T is the temperature.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data is included in the manuscript.]

Notes

  1. Papers [29, 30] presented also analytical results for Lorentz-Doppler profiles of hydrogenic spectral lines and for the principal quantum number of the last observable hydrogenic line in a spectral series. The latter was also discussed in paper [31].

  2. For polar molecules, the expression for the Stark shift (\({\hbox {DF/I}}_{\mathrm {iner}})^{1/2}\) is valid for \(\hbox {F}>> \hbar ^{2}/({\hbox {I}}_{\mathrm {iner}} \hbox {D})\).

References

  1. E. Oks, Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lines of One-, Two-, and Three-Electron Systems (World Scientific, New Jersey, 2017)

    Book  Google Scholar 

  2. H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, Berlin, 2009)

    Book  Google Scholar 

  3. E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight (Alpha Science International, Oxford, UK, 2006)

    Google Scholar 

  4. T. Fujimoto, Plasma Spectroscopy (Clarendon Press, Oxford, UK, 2004)

    Book  Google Scholar 

  5. D. Salzman, Atomic Physics in Hot Plasmas (Oxford University Press, Oxford, 1998)

    Google Scholar 

  6. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  7. E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields, Springer Series on Atoms and Plasmas, vol. 9 (Springer, New York, 1995)

  8. E. Oks, Atoms 6, 50 (2018)

    Article  ADS  Google Scholar 

  9. G.V. Sholin, Sov Phys. Doklady 195, 589 (1970)

    Google Scholar 

  10. G.V. Sholin, E. Oks, Sov. Phys.-Doklady 18, 254 (1973)

    ADS  Google Scholar 

  11. E. Oks, G.V. Sholin, Sov. Phys. JETP 41, 482 (1975)

    ADS  Google Scholar 

  12. E. Oks, G.V. Sholin, Sov. Phys. Tech. Phys. 21, 144 (1976)

    Google Scholar 

  13. E. Oks, Sov. Astron. Lett. 4, 223 (1978)

    ADS  Google Scholar 

  14. E. Oks, Sov. Phys. Doklady 29, 224 (1984)

    ADS  Google Scholar 

  15. E. Oks, Meas. Techniques 29, 805 (1986)

    Article  Google Scholar 

  16. A.S. Antonov, O.A. Zinov’ev, V.D. Rusanov, A.V. Titov, Sov. Phys. JETP 31, 838 (1970)

    ADS  Google Scholar 

  17. S.P. Zagorodnikov, G.E. Smolkin, E.A. Striganova, G.V. Sholin, Sov. Phys. Doklady 15, 1122 (1971)

    ADS  Google Scholar 

  18. E.K. Zavojskij, JuG Kalinin, V.A. Skorjupin, V.V. Shapkin, G.V. Sholin, Sov. Phys. Doklady 15, 823 (1971)

    ADS  Google Scholar 

  19. M.A. Levine, C.C. Gallagher, Phys. Lett. A32, 14 (1970)

    Article  ADS  Google Scholar 

  20. N. Ben-Yosef, A.G. Rubin, Phys. Lett. A33, 222 (1970)

    Article  ADS  Google Scholar 

  21. A.B. Berezin, A.V. Dubovoj, B.V. Ljublin, Sov. Phys. Tech. Phys. 16, 1844 (1972)

    ADS  Google Scholar 

  22. M.V. Babykin, A.I. Zhuzhunashvili, E. Oks, V.V. Shapkin, G.V. Sholin, Sov. Phys. JETP 38, 86 (1974)

    ADS  Google Scholar 

  23. JaF Volkov, V.G. Djatlov, A.I. Mitina, Sov. Phys. Tech. Phys. 19, 905 (1975)

    ADS  Google Scholar 

  24. A.B. Berezin, B.V. Ljublin, D.G. Jakovlev, Sov. Phys. Tech. Phys. 28, 407 (1983)

    Google Scholar 

  25. V.P. Gavrilenko, E. Oks, V.A. Rantsev-Kartinov, JETP Lett. 44, 404 (1986)

    ADS  Google Scholar 

  26. A.N. Koval, E. Oks, Bull. Crimean Astrophys. Observ. 67, 78 (1983)

    ADS  Google Scholar 

  27. A.G. Frank, V.P. Gavrilenko, N.P. Kyrie, E. Oks, J. Phys. B: At. Mol. Opt. Phys. 39, 5119 (2006)

    Article  ADS  Google Scholar 

  28. E. Oks, R.E. Gershberg, Astrophys. J. 819, 16 (2016)

    Article  ADS  Google Scholar 

  29. E. Oks, Int. Rev. Atomic Mol. Phys. 4, 105 (2013)

    Google Scholar 

  30. E. Oks, J. Quant. Spectrosc. Rad. Transfer 156, 24 (2015)

    Article  ADS  Google Scholar 

  31. J. Rosato, Y. Marandet, R. Stamm, J. Phys. B: Atom. Mol. Opt. Phys. 47, 105702 (2014)

    Article  ADS  Google Scholar 

  32. K. Meyenn, Z. Phys. 231, 154 (1970)

    Article  ADS  Google Scholar 

  33. B.L. Welch, H.R. Griem, J. Terry, C. Kurz, B. LaBombard, B. Lipschultz, E. Marmar, J. McCracken, Phys. Plasmas 2, 4246 (1995)

    Article  ADS  Google Scholar 

  34. F.D. Rosenberg, U. Feldman, G.A. Doschek, Astrophys. J. 212, 905 (1977)

    Article  ADS  Google Scholar 

  35. U. Feldman, G.A. Doschek, Astrophys. J. 212, 913 (1977)

    Article  ADS  Google Scholar 

  36. B. Franzon, St Schramm, J. Phys. Conf. Ser. 861, 012015 (2017)

  37. D. Reimers, S. Jordan, D. Koester, N. Bade, Astron. Astrophys. 311, 572 (1996)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Oks.

Appendix A. Validity conditions

Appendix A. Validity conditions

In plasmas where there is a large number of ions \(\nu \) in the sphere of the Debye radius

$$\begin{aligned} \nu = [{\hbox {T}}_{\mathrm {e}}^{\mathrm {3}}/(36\pi {\hbox {N}}_{\mathrm {e}} {\hbox {e}}^{\mathrm {6}})]^{1/2} = 1377 [{\hbox {T}}_{\mathrm {e}}^{\mathrm {3}}/{\hbox {N}}_{\mathrm {e}} {\hbox {e}}^{\mathrm {6}}]^{1/2}> > 1,\qquad \end{aligned}$$
(A.1)

the most probable ion field is

$$\begin{aligned} {\hbox {E}}_{\mathrm {i}} = 1.608 {\hbox {E}}_{0}, \quad {\hbox {E}}_{0} = 2.603 {\hbox {eN}}_{\mathrm {e}}^{2/3} = 1.25\hbox {x}10^{-9} {\hbox {N}}_{\mathrm {e}}^{2/3}.\nonumber \\ \end{aligned}$$
(A.2)

In Eqs. (A.1) and (A.2), \({\hbox {N}}_{\mathrm {e}}\) is the electron density in \({\hbox {cm}}^{-3}\)and \({\hbox {T}}_{\mathrm {e}}\) is the electron temperature in Kelvin.

The root-mean-square Lorentz field for thermal velocities

$$\begin{aligned} {\hbox {Bv}}_{0}/\hbox {c} = 4.28\hbox {x}10^{-3} \hbox {B(Tesla)}[\hbox {T}(\hbox {K})]^{1/2} \end{aligned}$$
(A.3)

is greater than the most probable ion microfield \({\hbox {E}}_{\mathrm {i}}\) when the magnetic field B is greater than the following critical value:

$$\begin{aligned} {\hbox {B}}_{\mathrm {c}} \hbox {(Tesla)} = 4.69\hbox {x}10^{-7} {\hbox {N}}_{\mathrm {e}}^{2/3}/ [\hbox {T(K)}]^{1/2}. \end{aligned}$$
(A.4)

The condition \(\hbox {B} > {\hbox {B}}_{\mathrm {c}}\) can be satisfied, for example, for the edge plasmas of tokamaks. For example, for a low-density discharge in Alcator C-Mod [33], where there was \({\hbox {N}}_{\mathrm {e}} \sim 3\hbox {x}10^{13} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} \sim 5\hbox {x}10^{4}\) K, we get \({\hbox {B}}_{\mathrm {c}} = 4 \, \hbox {T}\), while the actual magnetic field was 8 T.

Another example: the chromosphere of the quiet Sun where the typical plasma parameters are \({\hbox {N}}_{\mathrm {e}} \sim 10^{11} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} \sim 10^{4} \, \hbox {K}\) – see, e.g., papers [34, 35]. In this case from Eq. (A.4) we get \({\hbox {B}}_{\mathrm {c}} = 0.1 \, \hbox {T}\). A more accurate estimate for this example can be obtained by taking into account that non-thermal velocities in the solar chromosphere can be several times higher than the thermal velocities. This lowers \({\hbox {B}}_{\mathrm {c}}\) to the value \(\sim 0.03\) Tesla, while B can reach 0.4 T in sunspots.

Yet another example: atmospheres of DA white dwarfs, where the typical plasma parameters are \({\hbox {N}}_{\mathrm {e}} \sim 10^{17} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} \sim 10^{4} \, \hbox {K}\). In this case from Eq. (A.4) we get \({\hbox {B}}_{\mathrm {c}} \sim 10^{3} \, \hbox {T}\), while B can reach \(\sim 10^{5}\) Tesla – see, e.g., papers [36, 37].

As for the LET, its energy density \({\text {F}}_{0}^{2}/(16 \pi {\hbox {N}}_{\mathrm {e}} {\hbox {T}}_{\mathrm {e}})\) can reach values \(\sim 0.1\), so that the ratio \({\text {F}}_{0}/{\hbox {E}}_{\mathrm {i}}\) can be as high as

$$\begin{aligned} {\text {F}}_{0}/{\hbox {E}}_{\mathrm {i}} \sim \nu ^{1/3}> > 1, \end{aligned}$$
(A.5)

For example, such a strong field of the LET had been detected (by using a spectroscopic diagnostic) in tokamak T-10 [25].

Finally, let us bring up the following point. In the situations, where at the absence of the LET, the ion broadening of hydrogen lines was in the “impact” (more rigorously, fully dynamic) regime, the presence of a relatively strong LET can change the ion broadening to the quasistatic regime (i.e, to the regime where the overwhelming majority of ions can be considered quasistatic) under the following condition

$$\begin{aligned} {\text {v}}_{0}/{\text {r}}_{\mathrm {Ni}} < [3\hbar /(2{\hbox {m}}_{\mathrm {e}}\hbox {e})] {\hbox {nF}}_{0}, \end{aligned}$$
(A.6)

where

$$\begin{aligned} {\text {r}}_{\mathrm {Ni}} = [3/(4\pi {\hbox {N}}_{\mathrm {i}})]^{1/3} \end{aligned}$$
(A.7)

is the mean interionic distance. The left side of the inequality (A.6) is the characteristic frequency of the variation of the ion microfield, while the right side is the separation between Stark sublevels of hydrogen atoms of the principal quantum number n – the separation caused by the root-mean square field of the LET \({\text {F}}_{0}\). Physically, under the inequality (A.6), the ion microfield cannot cause virtual transitions between the Stark sublevels (leading to the “impact” broadening), so that the ion microfield becomes quasistatic.

The inequality (A.6) can be rewritten as

$$\begin{aligned} {\text {F}}_{0} > {\text {F}}_{\mathrm {crit}}, \end{aligned}$$
(A.8)

where the critical value \({\text {F}}_{\mathrm {crit}}\) of the LET is as follows:

$$\begin{aligned} {\text {F}}_{\mathrm {crit}} = [2{\hbox {m}}_{\mathrm {e}} \hbox {e}/(3\hbar \hbox {n})]({\hbox {T/M}}_{\mathrm {r}})^{1/2}(4\pi {\hbox {N}}_{\mathrm {i}}/3)^{1/3}. \end{aligned}$$
(A.9)

Here \({\hbox {M}}_{\mathrm {r}}\) is the reduced mass of the ion-radiator pair. For hydrogen plasmas, where \({\hbox {M}}_{\mathrm {r}} = {\hbox {M}}_{\mathrm {p}}/2\) (\({\hbox {M}}_{\mathrm {p}}\) being the proton mass) and \({\hbox {N}}_{\mathrm {i}} = {\hbox {N}}_{\mathrm {e}}\), Eq. (A.9) can be represented in the following practical form:

$$\begin{aligned} {\text {F}}_{\mathrm {crit}}(\hbox {V/cm}) = 0.115[\hbox {T(eV)}]^{1/2} [{\hbox {N}}_{\mathrm {e}} ({\hbox {cm}}^{-3})]^{1/3}/\hbox {n}. \end{aligned}$$
(A.10)

Let us consider the following numerical examples. For edge plasmas of tokamaks, for \({\hbox {N}}_{\mathrm {e}} = 10^{\mathrm {14}} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} = 2 \, \hbox {eV}\), Eq. (A.10) yields \({\text {F}}_{\mathrm {crit}} = 1.5 \, \hbox {kV/cm}\) for the Lyman-delta line (\(\hbox {n} = 5\)), or \({\text {F}}_{\mathrm {crit}} = 2.5 \, \hbox {kV/cm}\) for the Lyman-beta line (\(\hbox {n} = 3\)), or \({\text {F}}_{\mathrm {crit}} =\) 1.9 kV/cm for the Balmer-beta line (\(\hbox {n} = 4\)). The field \({\text {F}}_{0}\) of the LET can significantly exceed \({\text {F}}_{\mathrm {crit}}\) (e.g, \({\text {F}}_{0} \sim 20 \, \hbox {kV/cm}\) was measured spectroscopically in tokamak T-10 [25]) and thus switch the ion broadening regime from “impact” to quasistatic – even for the spectral lines originating from levels of relatively low principal quantum number n (for sufficiently high excited lines, where \(\text {n}> > 1\), the ion broadening is quasistatic even at the absence of the LET).

For solar flares at \({\hbox {N}}_{\mathrm {e}} = 10^{13} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} = 1 \, \hbox {eV}\), Eq. (A.10) yields \({\text {F}}_{\mathrm {crit}} = 165 \, \hbox {V/cm}\) for the Balmer line \({\hbox {H}}_{15}\) observed even in the most powerful solar flares (Balmer lines of \(\hbox {n} > 15\) are observed in less powerful solar flares). The field \({\text {F}}_{0}\) of the LET can significantly exceed \({\text {F}}_{\mathrm {crit}}\): e.g, \({\text {F}}_{0} \sim (1 - 1.5) \, \hbox {kV/cm}\) was measured spectroscopically in solar flares (see, e.g., papers [26, 28]).

For flare stars at \({\hbox {N}}_{\mathrm {e}} = 10^{15} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} = 1 \, \hbox {eV}\), Eq. (A.10) yields \({\text {F}}_{\mathrm {crit}} = 1.9 \, \hbox {kV/cm}\) for the Balmer-delta line observed even in the most powerful stellar flares (Balmer lines of up to \(\hbox {n} = 11\) are observed in less powerful stellar flares). The field \({\text {F}}_{0}\) of the LET can significantly exceed \({\text {F}}_{\mathrm {crit}}\): e.g, \({\text {F}}_{0}\) up to 30 kV/cm was measured spectroscopically in stellar flares (see, e.g., paper [28]).

As for plasmas of DA white dwarfs of typical parameters \({\hbox {N}}_{\mathrm {e}} \sim 10^{17} \, {\hbox {cm}}^{-3}\) and \(\hbox {T} \sim 1 \, \hbox {eV}\), the ion broadening of all Balmer lines is quasistatic – regardless of whether any LET is present.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oks, E. Stark-Lorentz profiles of spectral lines of atoms and polar molecules in magnetized turbulent plasmas: analytical results. Eur. Phys. J. D 75, 184 (2021). https://doi.org/10.1140/epjd/s10053-021-00198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00198-1

Navigation