Skip to main content

Advertisement

Log in

VUV photoionization and dissociative photoionization of o-xylene: experimental and theoretical insights

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The photoionization and dissociative photoionization of o-xylene have been studied using synchrotron radiation vacuum ultraviolet light with the photon energy in the range of 8.0–13.0 eV. The ionization energy of o-xylene and the appearance energies for the main fragment ions \(\hbox {C}_{\mathrm {8}}\hbox {H}_{\mathrm {9}}^{+}\), \(\hbox {C}_{\mathrm {7}}\hbox {H}_{\mathrm {7}}^{+}\) and \(\hbox {C}_{\mathrm {6}}\hbox {H}_{\mathrm {6}}^{+}\) were determined to be 8.45, 11.08, 11.47 and 11.17 eV, respectively, with photoionization efficiency spectra (PIES). Three dissociation pathways of parent ions are investigated by experimental photoionization and the quantum-chemical calculations. The fragment ions \(\hbox {C}_{\mathrm {7}}\hbox {H}_{\mathrm {7}}^{\mathrm {+}}\) derived from parent ions involved hydrogen atom transfer rather than direct dissociation. Particularly, detailed mechanisms of dissociation \(\hbox {C}_{\mathrm {6}}\hbox {H}_{\mathrm {6}}^{+}\) are presented for the first time in this work. In addition, the geometries of the intermediates (INTs), transition states (TSs) and products have been performed at B3LYP/6-311 \(+ \,+\) G (d, p) level. The mechanisms of dissociative photoionization of o-xylene and the INTs and TSs involved are discussed in detail.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Author’s comment: All data generated during this study are contained in this published article.]

References

  1. J. Chen, X. Chen, X. Chen, W. Xu, Z. Xu, H. Jia, J. Chen, Appl. Catal. B 224, 825 (2018)

    Article  Google Scholar 

  2. M. Piumetti, D. Fino, N. Russo, Appl. Catal. B 163, 277 (2015)

    Article  Google Scholar 

  3. C.W. Yu, J.T. Kim, Indoor Built Environ. 19, 30 (2010)

    Article  Google Scholar 

  4. C. Song, N.A. Kwangsam, B. Warren, Q. Malloy, D.R. Cocker, Environ. Sci. Technol. 41, 7403 (2007)

    Article  ADS  Google Scholar 

  5. K. Na, K.-C. Moon, Y.P. Kim, Atmos. Environ. 39, 5517 (2005)

    Article  ADS  Google Scholar 

  6. A. Kansal, J. Hazard. Mater. 166, 17–26 (2009)

    Article  Google Scholar 

  7. P. Zhang, J. Huang, J. Shu, B. Yang, Environ. Pollut. 245, 20 (2019)

    Article  Google Scholar 

  8. F. Gaie-Levrel, C. Gutlé, H.W. Jochims, E. Rühl, M. Schwell, J. Phys. Chem. A 112, 5138 (2008)

    Article  Google Scholar 

  9. C. Song, N.A. Kwangsam, B. Warren, B. Warren, Q. Malloy, D.R. Cocker, Environ. Sci. Technol. 41, 7403 (2007)

    Article  ADS  Google Scholar 

  10. J.P. Maier, D.W. Turner, J. Chem. Soc. Faraday Trans. 54, 196 (1973)

    Article  Google Scholar 

  11. F. Brogli, E. Giovannini, E. Heilbronner, R. Schurter, Eur. J. Inorg. Chem. 106, 961 (2010)

    Google Scholar 

  12. S.G. Lias, P. Ausloos, J. Am. Chem. Soc. 100, 6027 (1978)

    Article  Google Scholar 

  13. J.O. Howell, J.M. Goncalves, C. Amatore, L. Klasinc, J. Am. Chem. Soc. 106, 3968 (1984)

    Article  Google Scholar 

  14. A.G. Loudon, R.Z. Mazengo, J. Mass Spectr. 8, 179 (1974)

    Google Scholar 

  15. P. Nounou, J. Chim. Phys. 63, 994 (1966)

    Article  Google Scholar 

  16. M.E. Akopyan, F.I. Vilesov, Khim. Vysokikh Energ. 2, 107 (1968)

    Google Scholar 

  17. C.Q. Jiao, S.F. Adams, Chem. Phys. Lett. 573, 24 (2013)

    Article  ADS  Google Scholar 

  18. L. Zhao, Z.J. Cheng, L.L. Ye, F. Zhang, L.D. Zhang, F. Qi, Y.Y. Li, P. Combust. Inst. 35, 1745 (2015)

    Article  Google Scholar 

  19. S.S. Wang, R.H. Kong, X.B. Shan, Y.W. Zhang, L.S. Sheng, Z.Y. Wang, L.Q. Hao, S.K. Zhou, J. Synchrotron. Radiat. 13, 415 (2006)

    Article  Google Scholar 

  20. Y.J. Zhao, Y. Sun, J.D. Sun, W.Z. Fang, X.B. Shan, F.Y. Liu, L.S. Sheng, Z.Y. Wang, J. Electron. Spectrosc. Relat. Phenom. 173, 24 (2009)

    Article  Google Scholar 

  21. Y.J. Zhao, X.B. Shan, L.S. Sheng, Z.Y. Wang, J. Zhang, C.R. Yu, Chin. Phys. B 20, 043201–1 (2011)

    Article  ADS  Google Scholar 

  22. Y.J. Zhao, Y. Sun, R.H. Kong, Q. Du, W.Z. Fang, J.D. Sun, X.B. Shan, F.Y. Liu, L.S. Sheng, Z.Y. Wang, Nucl. Tech. 32, 561 (2009). (in Chinese)

    Google Scholar 

  23. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  24. C. Lee, W.T. Yang, G.P. Robert, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  25. C. Kosmidis, K.W.D. Ledingham, H.S. Kilic, T. McCanny, R.P. Singhal, A.J. Langley, W. Shaikh, J. Phys. Chem. A 101, 2264 (1997)

    Article  Google Scholar 

  26. Y.J. Zhao, Y.S. Zhan, L. Li, X. Li, X.Y. Lian, P. Huang, L.S. Sheng, J. Chen, Chin. J. Chem. Phys. 030, 303 (2017)

    Article  Google Scholar 

  27. S.J. Klippenstein, L.B. Harding, Y. Georgievskii, P. Combust. Inst. 31, 221 (2007)

    Article  Google Scholar 

  28. M.E. Akopyan, F.I. Vilesov, Russ. J. Phys. Chem. 40, 63 (1966)

    Google Scholar 

  29. T.M. Ezzat, M.A. Rabbih, M.A. Fahmey, M.F. Hawash, Int. J. Mass. Spectr. 113, 133 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11275006, No.11805032, No.11505027, No.11575178, No.U1532137), Nuclear Technology Application Engineering Research Center Open Foundation of Ministry of Education (No.HJSJYB2015-6, No.HJSJYB2018-6), the Chinese Scholarship Council (No.201608360053), the Graduate Students High-Quality Course Construction Program of Jiangxi Province (No.JXYYK2016-12), the China Postdoctoral Science Foundation(No.2013M531530), the Doctoral Foundation of East China University of Technology (No.DHBK201401) and the Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (No.KJ2012B086), Natural Science Foundation of Education Department of Guizhou Province ([2016]110) and Natural Science Foundation of Department of Science and Technology of Guizhou Province ([2020]QNSYXM03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Huang, P., Li, L. et al. VUV photoionization and dissociative photoionization of o-xylene: experimental and theoretical insights. Eur. Phys. J. D 75, 128 (2021). https://doi.org/10.1140/epjd/s10053-021-00135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00135-2

Navigation