Skip to main content
Log in

Monte Carlo study of the BMV vacuum linear magnetic birefringence experiment

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

QED vacuum can be polarized and magnetized by an external electromagnetic field, therefore acting as a birefringent medium. This effect has not yet been measured. In this paper, after having recalled the main facts concerning vacuum magnetic birefringence polarimetry detection method and the related noise sources, we detail our Monte Carlo simulation of a pulsed magnetic field data run. Our Monte Carlo results are optimized to match BMV experiment 2014 data. We show that our Monte Carlo approach can reproduce experimental results giving an important insight into the systematic effects limiting experiment sensitivity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Any data can be obtained directly from the corresponding author.]

References

  1. R. Battesti, C. Rizzo, Rep. Prog. Phys. 76, 016401 (2013)

    Article  ADS  Google Scholar 

  2. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, Hoboken, 2003)

    MATH  Google Scholar 

  3. T. Erber, Nature 190, 25–27 (1961)

    Article  ADS  Google Scholar 

  4. R. Battesti, J. Beard, S. Boser, N. Bruyant, D. Budker, S.A. Crooker, E.J. Daw, V.V. Flambaum, T. Inada, I.G. Irastorza, F. Karbstein, D.L. Kim, M.G. Kozlov, Z. Melhem, A. Phipps, P. Pugnat, G. Rikken, C. Rizzo, M. Schott, Y.K. Semertzidis, H.H.J. ten Kate, G. Zavattini, Phys. Rep. 765, 1 (2018)

    Article  ADS  Google Scholar 

  5. E. Iacopini, E. Zavattini, Phys. Lett. B 85, 151 (1979)

    Article  ADS  Google Scholar 

  6. A. Cadène, P. Berceau, M. Fouché, R. Battesti, C. Rizzo, Eur. Phys. J. D 68, 16 (2014)

    Article  ADS  Google Scholar 

  7. X. Fan, S. Kamioka, T. Inada, T. Yamazaki, T. Namba, S. Asai, J. Omachi, K. Yoshioka, M. Kuwata-Gonokami, A. Matsuo, K. Kawaguchi, K. Kindo, H. Nojiri, Eur. Phys. J. D 71, 308 (2017)

    Article  ADS  Google Scholar 

  8. JCGM, Evaluation of measurement data—Guide to the expression of uncertainty in measurement (2008)

  9. V.F. Della, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso, G. Zavattini, Eur. Phys. J. C 76, 24 (2016)

    Article  ADS  Google Scholar 

  10. A. Ejlli, V.F. Della, U. Gastaldi, G. Messineo, R. Pengo, G. Ruoso, G. Zavattini, Phys. Rep. 871, 1–74 (2020)

    Article  ADS  Google Scholar 

  11. F. Karbstein, Phys. Rev. D 98, 056010 (2018)

    Article  ADS  Google Scholar 

  12. B.F. Shen, Z.G. Bu, J.C. Xu, T.J. Xu, L.L. Ji, R.X. Li, Z.Z. Xu, Plas. Phys. Cont. Fus. 60, 044002 (2018)

    Article  Google Scholar 

  13. R.P. Mignani, V. Testa, D.G. Caniulef, R. Taverna, R. Turolla, S. Zane, K. Wu, Mon. Not. R. Astron. Soc. 465, 492–500 (2017)

    Article  ADS  Google Scholar 

  14. L.M. Capparelli, A. Damiano, L. Maiani, A.D. Polosa, Eur. Phys. J. C 77, 754 (2017)

    Article  ADS  Google Scholar 

  15. G. Aad et al., ATLAS collaboration. Phys. Rev. Lett. 123, 052001 (2019)

    Article  ADS  Google Scholar 

  16. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 797, 134826 (2019)

    Article  Google Scholar 

  17. R. Battesti, B. Pinto Da Souza, S. Batut, C. Robilliard, G. Bailly, C. Michel, M. Nardone, L. Pinard, O. Portugall, G. Trénec, J.-M. Mackowski, G.L.J.A. Rikken, J. Vigué, C. Rizzo, Eur. Phys. J. D 46, 323 (2008)

    Article  ADS  Google Scholar 

  18. M. Born, E. Wolf, Principles of optics (Pergamon Press, 1980), pp. 36–111

  19. V.F. Della, E. Milotti, A. Ejlli, U. Gastaldi, G. Messineo, L. Piemontese, G. Zavattini, R. Pengo, G. Ruoso, Opt. Express 22, 11570–11577 (2014)

    Article  ADS  Google Scholar 

  20. F. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard, C. Rizzo, Appl. Phys. B 97, 457 (2009)

    Article  ADS  Google Scholar 

  21. S. Xiao, B. Li, J. Wang, Appl. Opt. 59, A99–A105 (2020)

    Article  ADS  Google Scholar 

  22. B. Jacob, M.N. Vallet, F. Bretenaker, A. Le Floch, M. Oger, Opt. Lett. 20, 671–673 (1995)

    Article  ADS  Google Scholar 

  23. Y. Takudo, N. Takeda, J.H. Huang, K. Muroo, M. Yamamoto, Meas. Sci. Technol. 9, 20–23 (1998)

    Article  ADS  Google Scholar 

  24. P. Berceau, M. Fouché, R. Battesti, F. Bielsa, J. Mauchain, C. Rizzo, Appl. Phys. B 100, 803–809 (2010)

    Article  ADS  Google Scholar 

  25. P. Berceau, M. Fouché, R. Battesti, C. Rizzo, Phys. Rev. A 85, 013837 (2012)

    Article  ADS  Google Scholar 

  26. M.T. Hartman, A. Rivère, R. Battesti, C. Rizzo, Rev. Sci. Inst. 88, 123114 (2017)

    Article  ADS  Google Scholar 

  27. G. Zavattini, V.F. Della, A. Ejlli, W.-T. Ni, U. Gastaldi, E. Milotti, R. Pengo, G. Ruoso, Eur. Phys. J. C 78, 585 (2018)

    Article  ADS  Google Scholar 

  28. M.T. Hartman, R. Battesti, C. Rizzo, IEEE Trans. Inst. Meas. 68, 2268–2273 (2019)

    Article  Google Scholar 

  29. J. Timmer, M. Koenig, Astr. Astrophys. 300, 707 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by ANR (Grant No. ANR-14-CE32-0006). We thank all the members of the BMV collaboration. We specially thank M. Hartman and A. Charry and all the authors of [6].

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to J. Agil.

Appendix: discussion on the intensity ratio formula

Appendix: discussion on the intensity ratio formula

The formula used in 2014 to determine the ellipticity from the intensities is in our notation

$$\begin{aligned} P_e(t) = \hat{C}[P_t(t)]\left( \sigma ^{2}+(\varGamma +\hat{C}[\varPsi (t)])^{2}\right) , \end{aligned}$$
(30)

in this “Appendix” we will show that the error performed from the exact expression Eq. 11 is negligible. We recall that we have defined the operator \(\hat{C}\) associated to the cavity transfer function \(H(\nu )\) with a cutoff frequency \(\nu _c\) so that \(\varPsi _{f}(t)=\hat{C}[\varPsi (t)]=\mathscr {F}^{-1}[H(\nu )\mathscr {F}[\varPsi (t)]]\) where \(\mathscr {F}\) is the operator of the Fourier transform.

We consider that the ordinary intensity shows a small modulation around a DC value as \(P_{t}(t)=P_{t}^{\mathrm{DC}}\left( 1+\beta \cos \omega t\right) \) with \(\beta \ll 1\). To simplify we will also consider that the magnetic field is oscillating as \(B(t)=A\cos \omega _{\mathrm{B}}t\); therefore, the ellipticity \(\varPsi (t)\) can be written as

$$\begin{aligned} \varPsi (t)&=\alpha B^{2}(t)=\frac{\alpha A}{2}\left( 1+\cos 2\omega _{{B}}t\right) \nonumber \\&=\varPsi ^{{DC}}\left( 1+\cos 2\omega _{{B}}t\right) . \end{aligned}$$
(31)

We calculate \(P_{e}(t)\) using Eq. 11 taking the case \(\varPsi (t)\ll \varGamma \) so

$$\begin{aligned} P_{e}(t)\simeq \sigma ^{2}P_{t}(t)+\hat{C}\left( P_{t}(t)[\varGamma ^{2}+2\varGamma \varPsi (t)]\right) ; \end{aligned}$$
(32)

injecting our expressions for \(P_{t}(t)\) and \(\varPsi (t)\), we obtain

$$\begin{aligned} P_{e}(t)&=\sigma ^{2}P_{t}(t)+\hat{C}\left( P_{t}^{{DC}}\left( \varGamma ^{2}+2\varGamma \varPsi (t)\right) \right) \nonumber \\&\quad + \hat{C}\left( P_{t}^{{DC}}\beta \cos \omega t\left( \varGamma ^{2}+2\varGamma \varPsi (t)\right) \right) \nonumber \\&=\sigma ^{2}P_{t}(t)+P_{t}^{{DC}}\varGamma ^{2}+2\varGamma P_{t}^{{DC}}\varPsi _{f}(t)\nonumber \\&\quad +P_{t}^{{DC}}\varGamma ^{2}\beta \hat{C}\left( \cos \omega t\right) +2\varGamma P_{t}^{{DC}}\beta \hat{C}\left( \varPsi (t)\cos \omega t\right) \nonumber \\&=\sigma ^{2}P_{t}^{{DC}}+\sigma ^{2}P_{t}^{{DC}}\beta \cos \omega t +P_{t}^{{DC}}\varGamma ^{2}+2\varGamma P_{t}^{{DC}}\varPsi _{f}(t)\nonumber \\&\quad +P_{t}^{{DC}}\varGamma ^{2}\beta \hat{C}\left( \cos \omega t\right) +2\varGamma P_{t}^{{DC}}\beta \varPsi ^{{DC}}\hat{C}\left( \cos \omega t\right) \nonumber \\&\quad +2\varGamma P_{t}^{{DC}}\beta \varPsi ^{{DC}}\hat{C}\left( \cos \omega t\cos 2\omega _{{B}} t\right) . \end{aligned}$$
(33)

In order to calculate the ellipticity \(\varPsi ^{2014}(t)\) of 2014, we have to determine the inverse of \(P_{t,f}(t)=\hat{C}\left( P_{t}(t)\right) \)

$$\begin{aligned} \frac{1}{P_{t,f}(t)}=\frac{1}{P_{t}^{{DC}}\left( 1+\beta C\left( \cos \omega t\right) \right) } \simeq \frac{1}{P_{t}^{{DC}}}\left( 1-\beta C\left( \cos \omega t\right) \right) , \end{aligned}$$

because \(\beta \ll 1\). We calculate the ratio \(P_{e}(t)/P_{t,f}(t)\), neglecting of terms in \(\beta ^{2}\)

$$\begin{aligned} \frac{P_{e}(t)}{P_{t,f}(t)}&\simeq \sigma ^{2}+\varGamma ^{2}+2\varGamma \varPsi _{f}(t)+\sigma ^{2}\beta \left( \cos \omega t-\hat{C}\left( \cos \omega t\right) \right) \nonumber \\&\quad -2\varGamma \beta \varPsi _{f}(t)\hat{C}\left( \cos \omega t\right) +2\varGamma \beta \varPsi ^{\mathrm{DC}}\hat{C} \left( \cos \omega t\right) \nonumber \\&\quad +2\varGamma \beta \varPsi ^{{DC}}\hat{C}\left( \cos \omega t\cos 2\omega _{{B}}t\right) \nonumber \\&=\sigma ^{2}+\varGamma ^{2}+2\varGamma \varPsi _{f}(t)+\sigma ^{2}\beta \left( \cos \omega t-\hat{C}\left( \cos \omega t\right) \right) \nonumber \\&\quad +2\varGamma \beta \varPsi ^{{DC}}\left( \hat{C}\left( \cos \omega t\cos 2\omega _{{B}}t\right) \right. \nonumber \\&\quad -\left. \hat{C}\left( \cos \omega t\right) \hat{C}\left( \cos 2\omega _{{B}}\right) \right) . \end{aligned}$$
(34)

We finally obtain the ellipticity as it was computed in 2014, that is \(\varPsi ^{2014}(t)=\left( \frac{P_{e}(t)}{P_{t,f}(t)}-\sigma ^{2}-\varGamma ^{2}\right) /2\varGamma \) and we calculate the error as \(\delta (t)=\varPsi ^{2014}(t)-\varPsi _{f}(t)\)

$$\begin{aligned} \delta (t)&=\frac{\sigma ^{2}\beta }{2\varGamma }\left( \cos \omega t-\hat{C}\left( \cos \omega t\right) \right) \nonumber \\&\quad +\beta \varPsi ^{{DC}}\left( \hat{C}\left( \cos \omega t\cos 2\omega _{{B}}t\right) \right. \nonumber \\&\quad -\left. \hat{C}\left( \cos \omega t\right) \hat{C}\left( \cos 2\omega _{{B}}\right) \right) \nonumber \\&=\frac{\sigma ^{2}\beta }{2\varGamma }\left( \cos \omega t-\hat{C}\left( \cos \omega t\right) \right) \nonumber \\&\quad +\beta \varPsi ^{{DC}}\left( \frac{1}{2}\hat{C}\left( \cos (\omega +2\omega _{{B}})t\right) \right. \nonumber \\&\quad +\left. \frac{1}{2}\hat{C}\left( \cos (\omega - 2\omega _{{B}})t\right) -\hat{C}\left( \cos \omega t\right) \hat{C}\left( \cos 2\omega _{{B}}\right) \right) . \end{aligned}$$
(35)

We first study the case where \(\omega \ll \omega _{c}\), because a magnetic shot typically last about ten milliseconds we can consider that during the duration of the shot we have \(\omega t\ll 1\), so

$$\begin{aligned} \delta (t)\simeq \beta \varPsi ^{{DC}}\left( \hat{C} \left( \cos 2\omega _{{B}}t\right) -\hat{C}\left( \cos 2\omega _{{B}}t\right) \right) =0. \end{aligned}$$
(36)

In the limit \(\omega \gg \omega _{c}\), because the cavity filtering on a cosinus is

$$\begin{aligned} \hat{C}\left( \cos \omega t\right) =\frac{1}{\sqrt{1+(\omega /\omega _{c})^{2}}} \cos \left( \omega t -\arctan (\omega /\omega _{c})\right) , \end{aligned}$$
(37)

so for this limit we have

$$\begin{aligned} \delta (t)\simeq \frac{\sigma ^{2}\beta }{2\varGamma }\cos \omega t. \end{aligned}$$
(38)

If we use the typical parameters of an experiment like the one in Ref. [6], we found that the amplitude of the error is of the order of \(10^{-9}\).

We can therefore consider that the formula used in 2014, although incorrect, presents a negligible error.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agil, J., Battesti, R. & Rizzo, C. Monte Carlo study of the BMV vacuum linear magnetic birefringence experiment. Eur. Phys. J. D 75, 90 (2021). https://doi.org/10.1140/epjd/s10053-021-00100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00100-z

Navigation