Skip to main content
Log in

Quantum temporal steering in a noise channel with topological characterization

  • Regular Article - Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We explore quantum temporal steering, measured by temporal steering robustness \({\mathcal {R}}_\mathrm{TS}\), in a quantum channel \(\varLambda \) described by a qubit coupling to an extended anisotropic XY spin chain associated with non-trivial topological characterization. When the environment channel undergoes a topological quantum phase transition (TQPT), driven by magnetic field \(\lambda \), we find that \({\mathcal {R}}_\mathrm{TS}\) is remarkably depressed. Moreover, \({\mathcal {R}}_\mathrm{TS}\) exhibits a finite-size scaling behavior in the vicinity of TQPT points. Meanwhile, by calculating the temporal steering robustness power \(P_{{\mathcal {R}}}\), we can get the environment channel’s phase diagram which is exactly similar with the one obtained by topological quantity, i.e., winding number \({\mathcal {N}}\). Additionally, we also analyze the behaviors of \({\mathcal {R}}_\mathrm{TS}\) when the environment channel is driven by other parameters (i.e., anisotropy of nearest-neighbor interaction \(\gamma \), three-site interactions \(\alpha \) and anisotropy of three-site interactions \(\delta \)). The results show that \({\mathcal {R}}_\mathrm{TS}\) approaches to zero quickly in a short time t at all the TQPT points and \(P_{{\mathcal {R}}}\) can also highlight these points exactly for all driving parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study work and there are no external data associated with the manuscript.]

References

  1. H.M. Wiseman, S.J. Jones, A.C. Doherty, Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. S.J. Jones, H.M. Wiseman, A.C. Doherty, Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Skrzypczyk, M. Navascués, D. Cavalcanti, Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

  4. D. Cavalcanti, P. Skrzypczyk, Rep. Prog. Phys. 80, 024001 (2017)

    ADS  Google Scholar 

  5. R. Uola, A.C.S. Costa, H.C. Nguyen, O. Gühne, Rev. Mod. Phys. 92, 015001 (2020)

    ADS  Google Scholar 

  6. M. Piani, J. Watrous, Phys. Rev. Lett. 114, 060404 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.B. Sainz, L. Aolita, N. Brunner, R. Gallego, P. Skrzypczyk, Phys. Rev. A 94, 012308 (2016)

    Article  ADS  Google Scholar 

  8. V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R.F. Werner, R. Schnabel, Nat. Photonics 6, 596 (2012)

    Article  ADS  Google Scholar 

  9. J. Bowles, T. Vértesi, M.T. Quintino, N. Brunner, Phys. Rev. Lett. 112, 200402 (2014)

    Article  ADS  Google Scholar 

  10. A.J. Bennet, D.A. Evans, D.J. Saunders, C. Branciard, E.G. Cavalcanti, H.M. Wiseman, G.J. Pryde, Phys. Rev. X 2, 031003 (2012)

    Google Scholar 

  11. S. Wollmann, N. Walk, A.J. Bennet, H.M. Wiseman, G.J. Pryde, Phys. Rev. Lett. 116, 160403 (2016)

    Article  ADS  Google Scholar 

  12. Q. Zeng, B. Wang, P.Y. Li, X.D. Zhang, Phys. Rev. Lett. 120, 030401 (2018)

    Article  ADS  Google Scholar 

  13. S. Jevtic, M. Pusey, D. Jennings, T. Rudolph, Phys. Rev. Lett. 113, 020402 (2014)

    Article  ADS  Google Scholar 

  14. C.B. Chen, C.L. Ren, X.J. Ye, J.L. Chen, Phys. Rev. A 98, 052114 (2018)

    Article  ADS  Google Scholar 

  15. C. Branciard, E.G. Cavalcanti, S.P. Walborn, V. Scarani, H.M. Wiseman, Phys. Rev. A 85, 010301 (2012)

  16. Q.Y. He, L. Rosales-Zárate, G. Adesso, M.D. Reid, Phys. Rev. Lett. 115, 180502 (2015)

    Article  ADS  Google Scholar 

  17. W.W. Cheng, K. Wang, W.F. Wang, Y.J. Guo, J. Phys. B: At. Mol. Opt. Phys. 52, 085501 (2019)

    Article  ADS  Google Scholar 

  18. W.W. Cheng, J. Piilo, Phys. Scr. 95, 035105 (2020)

    Article  ADS  Google Scholar 

  19. Q. Zheng, Y. Li, Eur. Phys. J. D 74, 74 (2020)

    Article  ADS  Google Scholar 

  20. T. Mihaescu, A. Isar, Eur. Phys. J. D 72, 104 (2018)

    Article  ADS  Google Scholar 

  21. A. Roy, S.S. Bhattacharya, A. Mukherjee, N. Ganguly, B. Paul, K. Mukherjee, Eur. Phys. J. D 73, 66 (2019)

    Article  ADS  Google Scholar 

  22. E.G. Cavalcanti, S.J. Jones, H.M. Wiseman, M.D. Reid, Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  23. L. Rosales-Zárate, R.Y. Teh, S. Kiesewetter, A. Brolis, K. Ng, M.D. Reid, J. Opt. Soc. Am. B 32, A82 (2015)

    Article  ADS  Google Scholar 

  24. R. Uola, F. Lever, O. Gühne, J.P. Pellonpää, Phys. Rev. A 97, 032301 (2018)

    Article  ADS  Google Scholar 

  25. Y.N. Chen, C.M. Li, N. Lambert, S.L. Chen, Y. Ota, G.Y. Chen, F. Nori, Phys. Rev. A 89, 032112 (2014)

    Article  ADS  Google Scholar 

  26. S.L. Chen, N. Lambert, C.M. Li, A. Miranowicz, Y.N. Chen, F. Nori, Phys. Rev. Lett. 116, 020503 (2016)

    Article  ADS  Google Scholar 

  27. H.Y. Ku, S.L. Chen, H.B. Chen, N. Lambert, Y.N. Chen, F. Nori, Phys. Rev. A 94, 062126 (2016)

    Article  ADS  Google Scholar 

  28. K. Bartkiewicz, A. Černoch, K. Lemr, A. Miranowicz, F. Nori, Phys. Rev. A 93, 062345 (2016)

    Article  ADS  Google Scholar 

  29. K. Bartkiewicz, A. Černoch, K. Lemr, A. Miranowicz, F. Nori, Sci. Rep. 6, 38076 (2016)

    Article  ADS  Google Scholar 

  30. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  31. Z.G. Yuan, P. Zhang, S.S. Li, Phys. Rev. A 75, 012102 (2007)

    Article  ADS  Google Scholar 

  32. B. Liu, Y.X. Huang, Z. Sun, Ann. Phys. (Berlin) 530, 1700373 (2018)

    Article  ADS  Google Scholar 

  33. J.L. Guo, X.Z. Zhang, Sci. Rep. 6, 32634 (2016)

    Article  ADS  Google Scholar 

  34. Z.G. Yuan, P. Zhang, S.S. Li, Phys. Rev. A 76, 042118 (2007)

    Article  ADS  Google Scholar 

  35. G. Zhang, Z. Song, Phys. Rev. Lett. 115, 177204 (2015)

    Article  ADS  Google Scholar 

  36. X.Z. Zhang, J.L. Guo, Quantum Inf. Process. 16, 223 (2017)

    Article  ADS  Google Scholar 

  37. S.P. Li, Z.H. Sun, Phys. Rev. A 98, 022317 (2018)

    Article  ADS  Google Scholar 

  38. S.Y. Yin, J. Song, Y.J. Zhang, S.T. Liu, Phys. Rev. B 100, 184417 (2019)

    Article  ADS  Google Scholar 

  39. C.K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  40. Y.R. Zhang, Y. Zeng, H. Fan, J.Q. You, F. Nori, Phys. Rev. Lett. 120, 250501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Natural Science Foundation of Nanjing University of Posts and Telecommunication (Grant No. NY218005) and the Natural Science Foundation of China (Grant No. 61871234).

Author information

Authors and Affiliations

Authors

Contributions

WWC and MC contributed to the conceptual development of the project and calculations. LYG and SMZ contributed to discuss the results.

Corresponding author

Correspondence to W. W. Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W.W., Chen, M., Gong, L.Y. et al. Quantum temporal steering in a noise channel with topological characterization. Eur. Phys. J. D 75, 75 (2021). https://doi.org/10.1140/epjd/s10053-021-00090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00090-y

Navigation