Skip to main content
Log in

Quantum router modulated by two Rydberg atoms in a X-shaped coupled cavity array

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically investigate the single-photon router using two Rydberg atoms embedded in a multi-channel coupled cavity arrays(CCAs) driven by a classical field. It is shown that when the Rydberg interaction is in the proper range, three kinds of photons with different frequencies are absorbed and the quantum routing can be achieved due to the spontaneous emission of the formed dressed states. The Rydberg interaction can also cause photons that are not originally in the energy range to be routed. Furthermore, the total reflection of the single photon is obtained because of the coherent resonance and the existence of the photonic bound states. Based on these characteristics, it is a feasible scheme to generate a multi-frequency photons router and it could be useful for designing the single-photon devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability Statement

This manuscript has no associated data or the data will not be deposited or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are included within the article.]

References

  1. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1996)

    Article  ADS  Google Scholar 

  2. Y. Wang, R.B. Liu, L.J. Sham, Phys. Rev. Lett. 95, 030504 (2005)

    Article  Google Scholar 

  3. H.J. Kimble, Nature London 453, 1023 (2008)

    Article  ADS  Google Scholar 

  4. L. Zhou, L.P. Yang, Y. Li, C.P. Sun, Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  5. X.M. Li, L.F. Wei, Phys. Rev. A 92, 063836 (2015)

    Article  ADS  Google Scholar 

  6. J. Lu, Z.H. Wang, L. Zhou, Opt. Express 23, 022955 (2015)

    Article  Google Scholar 

  7. W. Qin, F. Nori, Phys. Rev. A 93, 032337 (2016)

    Article  ADS  Google Scholar 

  8. G.A. Yan, Q.Y. Can, A.X. Chen, Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  9. X. Li, W.Z. Zhang, B. Xiong, L. Zhou, Sci. Rep. 6, 39343 (2016)

    Article  ADS  Google Scholar 

  10. J. Lu, L. Liu, Quantum Inf. Process. 10, 1007 (2017)

    Google Scholar 

  11. Z.X. Liang, Z.D. Zhang, W.M. Liu, Phys. Rev. Lett. 94, 050402 (2005)

    Article  ADS  Google Scholar 

  12. L. Li, Z. Li, B.A. Malomed, D. Mihalache, W.M. Liu, Phys. Rev. A 72, 033611 (2005)

    Article  ADS  Google Scholar 

  13. A.-C. Ji, W.M. Liu, J.L. Song, F. Zhou, Phys. Rev. Lett. 101, 010402 (2008)

    Article  ADS  Google Scholar 

  14. M. Yasunaga, M. Tsubota, Phys. Rev. Lett. 101, 220401 (2008)

    Article  ADS  Google Scholar 

  15. R. Qi, X.-L. Yu, Z.B. Li, W.M. Liu, Phys. Rev. Lett. 102, 185301 (2009)

    Article  ADS  Google Scholar 

  16. K.C. Wright, L.S. Leslie, A. Hansen, N.P. Bigelow, Phys. Rev. Lett. 102, 030405 (2009)

    Article  ADS  Google Scholar 

  17. M. Gärttner, S. Whitlock, D.W. Schönleber, J. Evers, Phys. Rev. Lett. 113, 233002 (2014)

    Article  ADS  Google Scholar 

  18. J. Qin, G. Dong, Phys. Rev. Lett. 115, 023901 (2015)

    Article  ADS  Google Scholar 

  19. T. Aoki, A.S. Parkins, D.J. Alton, C.A. Regal, B. Dayan, E. Ostby, K.J. Vahala, H.J. Kimble, Phys. Rev. Lett. 101, 083601 (2009)

    Article  ADS  Google Scholar 

  20. I.C. Hoi, C.M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  21. J. Lu, L. Zhou, L.M. Kuang, F. Nori, Phys. Rev. A 89, 013805 (2014)

    Article  ADS  Google Scholar 

  22. C. Jiang, B. Chen, K.D. Zhu, J. Appl. Phys. 112, 033113 (2012)

    Article  ADS  Google Scholar 

  23. A.-C. Ji, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 99, 183602 (2007)

    Article  ADS  Google Scholar 

  24. K. Lemr, K. Bartkiewicz, A. Cernoch, J. Soubusta, Phys. Rev. A 87, 062333 (2013)

    Article  ADS  Google Scholar 

  25. W.B. Yan, B. Liu, L. Zhou, H. Fan, Eur. Lett. 111, 64005 (2015)

    Article  ADS  Google Scholar 

  26. G.S. Agarwal, S.M. Huang, Phys. Rev. A 85, 021801 (2012)

    Article  ADS  Google Scholar 

  27. W.B. Yan, H. Fan, Phys. Rev. A 90, 053807 (2014)

    Article  ADS  Google Scholar 

  28. L. Liu, J.B. Yuan, S.Q. Tang, J. Low Temp. Phys. 18, 02126 (2018)

    Google Scholar 

  29. M. Ahumada, P.A. Orellana, F. Domínguez-Adame, A.V. Malyshev, Phys. Rev. A 99, 033827 (2019)

    Article  ADS  Google Scholar 

  30. M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  31. D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  32. M. Saffman, K. Mølmer, Phys. Rev. Lett. 102, 240502 (2009)

    Article  ADS  Google Scholar 

  33. S.-L. Su, E. Liang, S. Zhang, J.-J. Wen, L.-L. Sun, Z. Jin, A.-D. Zhu, Phys. Rev. A 93, 012306 (2016)

    Article  ADS  Google Scholar 

  34. D.X. Li, X.Q. Shao, Phys. Rev. A 98, 062338 (2018)

    Article  ADS  Google Scholar 

  35. C. Guerlin, E. Brion, T. Esslinger, K. Mølmer, Phys. Rev. A 82, 053832 (2010)

    Article  ADS  Google Scholar 

  36. V. Parigi, E. Bimbard, J. Stanojevic, A.J. Hilliard, F. Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, P. Grangier, Phys. Rev. Lett. 109, 233602 (2012)

    Article  ADS  Google Scholar 

  37. X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, A.-C. Ji, Phys. Rev. Lett. 110, 090402 (2013)

    Article  ADS  Google Scholar 

  38. J.F. Huang, J.Q. Liao, C.P. Sun, Phys. Rev. A 87, 023822 (2013)

    Article  ADS  Google Scholar 

  39. H. Wu, Z.-B. Yang, S.-B. Zheng, Phys. Rev. A 88, 043826 (2013)

    Article  ADS  Google Scholar 

  40. Y.-M. Liu, D. Yan, X.-D. Tian, C.-L. Cui, J.-H. Wu, Phys. Rev. A 89, 033839 (2014)

    Article  ADS  Google Scholar 

  41. A. Carmele, B. Voger, K. Stannige, P. Zoller, New J. Phys. 16, 063042 (2014)

    Article  ADS  Google Scholar 

  42. M.F. Maghrebi, N.Y. Yao, M. Hafezi, T. Pohl, O. Firstenberg, A.V. Gorshkov, Phys. Rev. A 91, 033838 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, J.P. Shaffer, Phys. Rev. A 96, 033813 (2017)

    Article  ADS  Google Scholar 

  44. D.X. Li, X.Q. Shao, Phys. Rev. A 99, 032348 (2019)

    Article  ADS  Google Scholar 

  45. W. Huaizhi, Z.-B. Yang, S.-B. Zheng, Phys. Rev. A 88, 043816 (2013)

    Article  ADS  Google Scholar 

  46. M.M. Müller, M. Murphy, S. Montangero, T. Calarco, Phys. Rev. A 89, 032334 (2014)

    Article  ADS  Google Scholar 

  47. D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 88, 133004 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11874190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, XP., Cao, Q., Dang, N. et al. Quantum router modulated by two Rydberg atoms in a X-shaped coupled cavity array. Eur. Phys. J. D 75, 79 (2021). https://doi.org/10.1140/epjd/s10053-021-00085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00085-9

Navigation