Skip to main content
Log in

Impurity in a Fermi gas under non-Hermitian spin–orbit coupling

  • Regular Article - Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the fate of an impurity in a two-component, non-interacting Fermi gas under a non-Hermitian spin–orbit coupling (SOC) which is generated by dissipative Raman lasers. While SOC mixes the two spin species in the Fermi gas thus modifies the single-particle dispersions, we consider the case where the impurity only interacts with one of the spin species. As a result, spectral properties of the impurity constitute an ideal probe to the dissipative Fermi gas in the background. In particular, we show that dissipation destabilizes polarons in favor of molecular formation, consistent with previous few-body studies. The dissipative nature of the Fermi gas further leads to broadened peaks in the inverse radio-frequency spectra for both the attractive and repulsive polaron branches, which could serve as signals for experimental observation. Our results provide an exemplary scenario where the interplay of non-Hermiticity and interaction can be probed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. H.J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993)

    Article  ADS  Google Scholar 

  2. V.V. Konotop, J. Yang, D.A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016)

    Article  ADS  Google Scholar 

  3. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, Nat. Phys. 14, 11 (2017)

    Article  Google Scholar 

  4. T.E. Lee, Phys. Rev. Lett. 16, 133903 (2016)

    Article  ADS  Google Scholar 

  5. F.K. Kunst, E. Edvardsson, J.C. Budich, E.J. Bergholtz, Phys. Rev. Lett. 121, 026808 (2018)

    Article  ADS  Google Scholar 

  6. S. Yao, Z. Wang, Phy. Rev. Lett. 121, 086803 (2018)

    Article  ADS  Google Scholar 

  7. S. Yao, F. Song, Z. Wang, Phys. Rev. Lett. 121, 136802 (2018)

    Article  ADS  Google Scholar 

  8. K. Yokomizo, S. Murakami, Phys. Rev. Lett. 123, 066404 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.H. Lee, R. Thomale, Phys. Rev. B 99, 201103(R) (2019)

    Article  ADS  Google Scholar 

  10. A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais, arXiv:1907.11619 (2019)

  11. L. Xiao, T.-S. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, P. Xue, Nat. Phys. 16, 761 (2020)

    Article  Google Scholar 

  12. S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, A. Szameit, Science 368, 311 (2020)

    Article  ADS  Google Scholar 

  13. N. Okuma, K. Kawabata, K. Shiozaki, M. Sato, Phys. Rev. Lett. 124, 086801 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Zhang, Z. Yang, C. Fang, Phys. Rev. Lett. 125, 126402 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Syassen, D.M. Bauer, M. Lettner, T. Volz, D. Dietze, J.J. Garcia-Ripoll, J.I. Cirac, G. Rempe, S. Dürr, Science 320, 1329 (2008)

    Article  ADS  Google Scholar 

  16. T. Tomita, S. Nakajima, I. Danshita, Y. Takasu, Y. Takahashi, Sci. Adv. 3, e1701513 (2017)

    Article  ADS  Google Scholar 

  17. T. Tomita, S. Nakajima, Y. Takasu, Y. Takahashi, Phys. Rev. A 99, 031601(R) (2019)

    Article  ADS  Google Scholar 

  18. A. Ghatak, T. Das, Phys. Rev. B 97, 014512 (2018)

    Article  ADS  Google Scholar 

  19. L. Zhou, X. Cui, iScience 14, 257 (2019)

  20. K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M. Ueda, N. Kawakami, Phys. Rev. Lett. 123, 123601 (2019)

    Article  ADS  Google Scholar 

  21. V.A. Brazhnyi, V.V. Konotop, V.M. Perez-García, H. Ott, Phys. Rev. Lett. 102, 144101 (2009)

    Article  ADS  Google Scholar 

  22. D.A. Zezyulin, V.V. Konotop, G. Barontini, H. Ott, Phys. Rev. Lett. 109, 020405 (2012)

    Article  ADS  Google Scholar 

  23. H. Cartarius, G. Wunner, Phys. Rev. A 86, 013612 (2012)

    Article  ADS  Google Scholar 

  24. W.D. Heiss, H. Cartarius, G. Wunner, J. Main, J. Phys. A: Math. Theor. 46, 275307 (2013)

    Article  ADS  Google Scholar 

  25. D.A. Zezyulin, V.V. Konotop, Phys. Rev. A 94, 043853 (2016)

    Article  ADS  Google Scholar 

  26. Y. Ashida, S. Furukawa, M. Ueda, Phys. Rev. A 94, 053615 (2016)

    Article  ADS  Google Scholar 

  27. L. Pan, S. Chen, X. Cui, Phys. Rev. A 99, 011601(R) (2019)

    Article  ADS  Google Scholar 

  28. L. Pan, S. Chen, X. Cui, Phys. Rev. A ibid, Phys. Rev. A 99, 063616 (2019)

  29. Z. Zhou, Z. Yu, Phys. Rev. A 99, 043412 (2019)

    Article  ADS  Google Scholar 

  30. M. Nakagawa, N. Tsuji, N. Kawakami, M. Ueda, Phys. Rev. Lett. 124, 147203 (2020)

    Article  ADS  Google Scholar 

  31. L. Pan, X. Chen, Y. Chen, H. Zhai, Nat. Phys. 16, 767–771 (2020)

    Article  Google Scholar 

  32. L. Zhou, W. Yi, X. Cui, Phys. Rev. A 102, 043310 (2020)

    Article  ADS  Google Scholar 

  33. G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, H. Ott, Phys. Rev. Lett. 110, 035302 (2013)

    Article  ADS  Google Scholar 

  34. R. Labouvie, B. Santra, S. Heun, H. Ott, Phys. Rev. Lett. 116, 235302 (2016)

    Article  ADS  Google Scholar 

  35. A. Müllers, B. Santra, C. Baals, J. Jiang, J. Benary, R. Labouvie, D. A. Zezyulin, V. V. Konotop, H. Ott, Sci. Adv. 4, eaat6539 (2018)

  36. R. Bouganne, M. B. Aguilera, A. Ghermaoui, J. Beugnon, F. Gerbier, Nat. Phys. (2019)

  37. R. Bouganne, M.B. Aguilera, A. Ghermaoui, J. Beugnon, F. Gerbier, Nat. Phys. 16, 21–25 (2020)

    Article  Google Scholar 

  38. J. Li, A.K. Harter, J. Liu, L. de Melo, Y.N. Joglekar, L. Luo, Nat. Commun. 10, 855 (2019)

    Article  ADS  Google Scholar 

  39. S. Lapp, J. Ang’ong’a, F. Alex An, B. Gadway, New. J. Phys. 21, 045006 (2019)

  40. L. Zhou, X. Cui, W. Yi, Phys. Rev. Lett. 112, 195301 (2014)

    Article  ADS  Google Scholar 

  41. F. Chevy, C. Mora, Rep. Prog. Phys. 73, 11 (2010)

    Article  Google Scholar 

  42. P. Massignan, M. Zaccanti, G.M. Bruun, Rep. Prog. Phys. 77, 034401 (2014)

    Article  ADS  Google Scholar 

Download references

We thank Xiaoling Cui, Jing Zhou, and Wei Yi for helpful discussions. This work has been supported by the Natural Science Foundation of China (Grant No. 11974331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Zheng Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JZ. Impurity in a Fermi gas under non-Hermitian spin–orbit coupling. Eur. Phys. J. D 75, 39 (2021). https://doi.org/10.1140/epjd/s10053-021-00049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00049-z

Navigation