Skip to main content
Log in

Selective high harmonics generated from a carbon nanotube

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Selective high-order harmonic radiation can be generated when circularly polarized driving fields interact with single-walled carbon nanotubes. We obtain a gauge-covariant Hamiltonian for electrons confined to a nanotube surface in the presence of a circularly polarized electromagnetic field. Regularized delta-functions are used to approximate the \({\pi }\)-bonds in the nanotube unit cells, and the electron dynamics, in the presence of the field, is analyzed. The high harmonic radiation occurs for incident field intensities high enough to induce significant nonlinearities and chaos in the electron dynamics. Both (5, 5) and (10, 10) armchair nanotubes are considered and the electron quantum dynamics is modeled using Floquet–Bloch theory. The behavior of the quasienergy spectrum, Floquet states, and the electron current are described for varying intensities of the incident field. We show that, for incident radiation with frequency \({\omega }\), the emitted radiation for a (pp) armchair nanotube will be \((2p\pm 1){\omega }\), \((4p\pm 1){\omega }\), etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

“This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. W. Choi et al., Mater. Today 20, 116 (2017)

    Article  Google Scholar 

  2. N. Briggs et al., 2D Mater. 6, 022001 (2019)

    Article  Google Scholar 

  3. E. Hendry et al., Phys. Rev. Lett. 105, 097401 (2010)

    Article  ADS  Google Scholar 

  4. A.R. Wright et al., Appl. Phys. Lett. 95, 072101 (2009)

    Article  ADS  Google Scholar 

  5. S.A. Jafari, J. Phys.: Condens. Matter 24, 205802 (2012)

    ADS  Google Scholar 

  6. J.L. Cheng, N. Vermeulen, J.E. Sipe, New J. Phys. 16, 053014 (2016)

    Article  Google Scholar 

  7. S. Yamashita, APL Photonics 4, 034301 (2018)

    Article  ADS  Google Scholar 

  8. M. Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988)

    Article  Google Scholar 

  9. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  10. S. Ghimire, A. DiChiara, E. Sistrunk et al., Nat. Phys. 7, 138 (2011)

    Article  Google Scholar 

  11. O. Schubert, M. Hohenleutner, F. Langer et al., Nat. Photonics 8, 119 (2014)

    Article  ADS  Google Scholar 

  12. S. Svanberg, A. L’Huillier, C.-G. Wahlstrom, Nucl. Instrum. Methods 298, 55 (1997)

    Article  ADS  Google Scholar 

  13. M. Schnürer et al., Phys. Rev. Lett. 80, 3236 (1998)

    Article  ADS  Google Scholar 

  14. P. Antoine, A. L’Huillier, M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996)

    Article  ADS  Google Scholar 

  15. M.D. Seaberg et al., Opt. Express 19, 22470 (2011)

    Article  ADS  Google Scholar 

  16. R.E.F. Silva et al., Nat. Photonics 12, 266 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Vozzi et al., Appl. Phys. Lett. 97, 241103 (2010)

    Article  ADS  Google Scholar 

  18. M.S. Shikakhwa, N. Chair, Phys. Lett. A 380, 1985 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  19. M.S. Shikakhwa, N. Chair, Eur. J. Phys. 38, 015402 (2017)

    Article  Google Scholar 

  20. O.E. Alon, V. Averbukh, N. Moiseyev, Phys. Rev. Lett. 80, 3743 (1998)

    Article  ADS  Google Scholar 

  21. O.E. Alon, V. Averbukh, N. Moiseyev, Phys. Rev. Lett. 85, 5218 (2000)

    Article  ADS  Google Scholar 

  22. O. Neufeld, D. Podolsky, O. Cohen, Nat. Commun. 10, 405 (2019)

    Article  ADS  Google Scholar 

  23. H. Hsu, L.E. Reichl, Phys. Rev. B 72, 155412 (2005)

    Article  ADS  Google Scholar 

  24. H. Hsu, L.E. Reichl, Phys. Rev. B 74, 115406 (2006)

    Article  ADS  Google Scholar 

  25. A. Rycerz, Phys. Rev. B 85, 245424 (2012)

    Article  ADS  Google Scholar 

  26. D.A. Steck, W.H. Oskay, M.G. Raizen, Science 293, 274 (2001)

    Article  ADS  Google Scholar 

  27. D.A. Steck, W.H. Oskay, M.G. Raizen, Phys. Rev. Lett. 88, 120406 (2002)

    Article  ADS  Google Scholar 

  28. R. Luter, L.E. Reichl, Phys. Rev. A 66, 53615 (2002)

    Article  ADS  Google Scholar 

  29. L.E. Reichl, The Transition to Chaos, 2nd edn. (Spring-Verlag, New York, 2004)

    Book  Google Scholar 

  30. V.I. Arnol’d, Russ. Math. Surv. 18, 9 (1963)

    Article  Google Scholar 

  31. Y. Boretz, L.E. Reichl, Phys. Rev. E 93, 032214 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Chapters 2–4 (Imperial College Press, London, 1998)

    Book  Google Scholar 

  33. S. Wang et al., Nanotechnology 17, 634 (2006)

    Article  ADS  Google Scholar 

  34. A.D. Bandrauk et al., J. Phys. B: At. Mol. Opt. Phys. 46, 153001 (2013)

    Article  ADS  Google Scholar 

  35. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Orlando, 2008), p. 28

    Google Scholar 

  36. S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  37. F.H.M. Faisal, J.Z. Kamiński, Phys. Rev. A 56, 748 (1997)

    Article  ADS  Google Scholar 

  38. C. Ortix, J. van den Brink, Phys. Rev. A 83, 113406 (2011)

    Google Scholar 

  39. B. Jensen, R. Dandoloff, Phys. Rev. A 80, 052109 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Robert A. Welch Foundation (Grant No. F-1051) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Reichl.

Additional information

W.A.F. performed the numerical calculations and obtained the numerical results presented in the paper. L.E.R. suggested the research topic and contributed to the theoretical structure of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furman, W.A., Reichl, L.E. Selective high harmonics generated from a carbon nanotube. Eur. Phys. J. D 75, 10 (2021). https://doi.org/10.1140/epjd/s10053-020-00012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00012-4

Navigation