Skip to main content

Advertisement

Log in

The interaction of M-BZ, M(\(\hbox {H}_{{2}}\hbox {O}\))-BZ, M-2BZ and M(\(\hbox {H}_{{2}}\hbox {O}\))-2BZ (\(\hbox {M} =\hbox {Li}^{+}\), \(\hbox {Na}^{+}\), \(\hbox {K}^{+}\), \(\hbox {Mg}^{2+}\), \(\hbox {Ca}^{2+}\)): EDA and ETS-NOCV approaches

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cation–\(\uppi \) or cation–2\(\uppi \) interactions generally exist between one cation and one or two electron-rich \(\uppi \)-ring, which play an important role in many areas (such as benzene, borazine, aromatic rings, graphene and carbon nanotubes). Here, we report the interaction of M-BZ, M(\(\hbox {H}_{{2}}\hbox {O}\))-BZ, M-2BZ and M(\(\hbox {H}_{{2}}\hbox {O}\))-2BZ (\(\hbox {BZ} = \hbox {borazine}\), \(\hbox {M} =\hbox {Li}^{{+}}\), \(\hbox {Na}^{{+}}\), \(\hbox {K}^{{+}}\), \(\hbox {Mg}^{{2+}}\), \(\hbox {Ca}^{{2+}})\) at the B3LYP-D3/TZ2P levels of theory. We found that the interaction energy decreases as the radii of the cations increase. The total interaction energy was decomposed into the dispersion correction, Pauli repulsion, electrostatic interaction and orbital interaction by using energy decomposition analysis. In addition, the binding energy of M-BZ (2BZ) is similar to that of M-benzene (2benzene), indicating the special importance of M-BZ (2BZ) interaction in biological system. From the extended transition state scheme with the theory of natural orbitals for chemical valence, the first dominant deformation densities plot shown the flow of charge between the fragments, which mean the BZ is \(\uppi \) donation and cation (M(\(\hbox {H}_{{2}}\hbox {O}\))) is \(\upsigma \) or \(\uppi \) acceptor.

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available from the corresponding author on reasonable request.]

References

  1. D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Marković, Nat. Chem. 1, 466 (2009)

    Article  Google Scholar 

  2. S. Schulze, S. Köster, U. Geldmacher, A.C. Terwisscha van Scheltinga, W. Kühlbrandt, Nature 467, 233 (2010)

    Article  ADS  Google Scholar 

  3. R. Madueno, M.T. Räisänen, C. Silien, M. Buck, Nature 454, 618 (2008)

    Article  ADS  Google Scholar 

  4. A.R. Rocha, V.M. García-suárez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Nat. Mater. 4(4), 335 (2005)

    Article  ADS  Google Scholar 

  5. M.O. Sinnokrot, E.F. Valeev, C.D. Sherrill, J. Am. Chem. Soc. 124(36), 10887 (2002)

    Article  Google Scholar 

  6. J.C. Ma, D.A. Dougherty, Chem. Rev. 97(5), 1303 (1997)

    Article  Google Scholar 

  7. C.A. Hunter, J. Singh, J.M. Thornton, J. Mol. Biol. 218(4), 837 (1991)

    Article  Google Scholar 

  8. S.K. Burley, G.A. Petsko, Science 229(4708), 23 (1985)

    Article  ADS  Google Scholar 

  9. X. Zheng, C. Wu, J.W. Ponder, G.R. Marshall, J. Am. Chem. Soc. 134(38), 15970 (2012)

    Article  Google Scholar 

  10. D. Barbaras, K. Gademann, ChemBioChem 9(15), 2398 (2008)

    Article  Google Scholar 

  11. N.H. Andersen, K.A. Olsen, R.M. Fesinmeyer, X. Tan, F.M. Hudson, L.A. Eidenschink, S.R. Farazi, J. Am. Chem. Soc. 128(18), 6101 (2006)

    Article  Google Scholar 

  12. L. Ito, K. Shiraki, T. Matsuura, M. Okumura, K. Hasegawa, S. Baba, H. Yamaguchi, T. Kumasaka, Protein Eng. Des. Sel. 24(3), 269 (2010)

    Article  Google Scholar 

  13. D. Shukla, B.L. Trout, J. Phys. Chem. B 114(42), 13426 (2010)

    Article  Google Scholar 

  14. C.R.W. Guimarães, D.J. Kopecky, J. Mihalic, S. Shen, S. Jeffries, S.T. Thibault, X. Chen, N. Walker, M. Cardozo, J. Am. Chem. Soc. 131(50), 18139 (2009)

    Article  Google Scholar 

  15. X. Zou, W. Ma, I.A. Solov’yov, C. Chipot, K. Schulten, Nucleic Acids Res. 40(6), 2747 (2011)

    Article  Google Scholar 

  16. M. Gooding, S. Tudzarova, R.J. Worthington, S.R. Kingsbury, A.-S. Rebstock, H. Dube, M.I. Simone, C. Visintin, D. Lagos, J.-M.F. Quesada, H. Laman, C. Boshoff, G.H. Williams, K. Stoeber, D.L. Selwood, Chem. Biol. Drug Design 79(1), 9 (2012)

    Article  Google Scholar 

  17. A.S. Reddy, D. Vijay, G.M. Sastry, G.N. Sastry, J. Phys. Chem. B 110(6), 2479 (2006)

    Article  Google Scholar 

  18. A.S. Reddy, H. Zipse, G.N. Sastry, J. Phys. Chem. B 111(39), 11546 (2007)

    Article  Google Scholar 

  19. M. Duan, B. Song, G. Shi, H. Li, G. Ji, J. Hu, X. Chen, H. Fang, J. Am. Chem. Soc. 134(29), 12104 (2012)

    Article  Google Scholar 

  20. I. Soteras, M. Orozco, F.J. Luque, Phys. Chem. Chem. Phys. 10(19), 2616 (2008)

    Article  Google Scholar 

  21. J.P. Beck, J.M. Lisy, J. Phys. Chem. A 115(17), 4148 (2011)

    Article  Google Scholar 

  22. P.G. Campbell, A.J.V. Marwitz, S.-Y. Liu, Angew. Chem. Int. Ed. 51(25), 6074 (2012)

    Article  Google Scholar 

  23. X.-Y. Wang, J.-Y. Wang, J. Pei, Chem. Eur. J. 21(9), 3528 (2015)

    Article  Google Scholar 

  24. W. Luo, P.G. Campbell, L.N. Zakharov, S.-Y. Liu, J. Am. Chem. Soc. 133(48), 19326 (2011)

    Article  Google Scholar 

  25. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nat. Acad. Sci. USA 102(30), 10451 (2005)

    Article  ADS  Google Scholar 

  26. D. Pacilé, J.C. Meyer, Ç.Ö. Girit, A. Zettl, Appl. Phys. Lett. 92(13), 133107 (2008)

    Article  ADS  Google Scholar 

  27. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10(8), 3209 (2010)

    Article  ADS  Google Scholar 

  28. Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M.S. Dresselhaus, L.-J. Li, J. Kong, Nano Lett. 10(10), 4134 (2010)

    Article  ADS  Google Scholar 

  29. A.B. Preobrajenski, A.S. Vinogradov, N. Mårtensson, Surf. Sci. 582(1), 21 (2005)

    Article  ADS  Google Scholar 

  30. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    Article  ADS  Google Scholar 

  31. L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, W. Chen, X. Xie, J. Zong, Y. Shan, Y. Guo, M. Willinger, H. Wu, Q. Li, W. Wang, P. Gao, S. Wu, Y. Zhang, Y. Jiang, D. Yu, E. Wang, X. Bai, Z.-J. Wang, F. Ding, K. Liu, Nature 570(7759), 91 (2019)

    Article  ADS  Google Scholar 

  32. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4(6), 2979 (2010)

    Article  Google Scholar 

  33. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317(5840), 932 (2007)

    Article  ADS  Google Scholar 

  34. K. Nejati, A. Hosseinian, L. Edjlali, E. Vessally, J. Mol. Liq. 229, 167 (2017)

    Article  Google Scholar 

  35. M. Wang, Y. Yang, Z. Yang, L. Gu, Q. Chen, Y. Yu, Adv. Sci. 4(4), 1600468 (2017)

    Article  Google Scholar 

  36. S.I. Yoon, D.-J. Seo, G. Kim, M. Kim, C.-Y. Jung, Y.-G. Yoon, S.H. Joo, T.-Y. Kim, H.S. Shin, ACS Nano 12(11), 10764 (2018)

    Article  Google Scholar 

  37. H. Guo, W. Zhang, N. Lu, Z. Zhuo, X.C. Zeng, X. Wu, J. Yang, J. Phys. Chem. C 119(12), 6912 (2015)

    Article  Google Scholar 

  38. L. Li, X. Yu, X. Yang, Y. Fang, X. Zhang, X. Xu, P. Jin, C. Tang, J. Mater. Chem. A 4(40), 15631 (2016)

    Article  Google Scholar 

  39. G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22(9), 931 (2001)

    Article  Google Scholar 

  40. E.J. Baerends, P. Ros, Chem. Phys. 2(1), 52 (1973)

    Article  Google Scholar 

  41. C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theoret. Chem. Acc. 99(6), 391 (1998)

    Google Scholar 

  42. A.D. Becke, Phys. Rev. A 38(6), 3098 (1988)

    Article  ADS  Google Scholar 

  43. A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993)

    Article  ADS  Google Scholar 

  44. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15), 154104 (2010)

    Article  ADS  Google Scholar 

  45. K.G. Dyall, Theoret. Chem. Acc. 108(6), 335 (2002)

    Article  Google Scholar 

  46. J.G. Snijders, P. Vernooijs, E.J. Baerends, At. Data Nucl. Data Tables 26(6), 483 (1981)

    Article  ADS  Google Scholar 

  47. E. Van Lenthe, E.J. Baerends, J. Comput. Chem. 24(9), 1142 (2003)

    Article  Google Scholar 

  48. M.P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 5(4), 962 (2009)

    Article  Google Scholar 

  49. A. Michalak, M. Mitoraj, T. Ziegler, J. Phys. Chem. A 112(9), 1933 (2008)

    Article  Google Scholar 

  50. J.S. Rao, H. Zipse, G.N. Sastry, J. Phys. Chem. B 113(20), 7225 (2009)

    Article  Google Scholar 

  51. J.C. Amicangelo, P.B. Armentrout, J. Phys. Chem. A 104(48), 11420 (2000)

    Article  Google Scholar 

  52. A. Klamt, G. Schuurmann, J. Chem. Soc. Perkin Trans. 2(5), 799 (1993)

    Article  Google Scholar 

  53. E.C. Anota, D.C. Arriagada, A.B. Hernández, M. Castro, Appl. Surf. Sci. 400, 283 (2017)

    Article  ADS  Google Scholar 

  54. S. Feng, H. Zhang, C. Zhi, X. Gao, H. Nakanishi, Int. J. Nanomed. 13, 641 (2018)

    Article  Google Scholar 

  55. X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando, D. Golberg, Chem. Commun. 49(66), 7337 (2013)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. to J.M. 21903057 and 91841301 to H.R.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JM and HR; Data Curation, ZL, BY; Formal Analysis, ZL, RF and JM; Writing—Original Draft Preparation, ZL and BY; Writing—Review and Editing, JM, ZL, YH and HZ.

Corresponding authors

Correspondence to Haisheng Ren or Jianyi Ma.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, B., Fan, R. et al. The interaction of M-BZ, M(\(\hbox {H}_{{2}}\hbox {O}\))-BZ, M-2BZ and M(\(\hbox {H}_{{2}}\hbox {O}\))-2BZ (\(\hbox {M} =\hbox {Li}^{+}\), \(\hbox {Na}^{+}\), \(\hbox {K}^{+}\), \(\hbox {Mg}^{2+}\), \(\hbox {Ca}^{2+}\)): EDA and ETS-NOCV approaches. Eur. Phys. J. D 75, 11 (2021). https://doi.org/10.1140/epjd/s10053-020-00008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00008-0

Navigation