Skip to main content
Log in

Statistical correlations in quantum systems with explicit three-body interactions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Higher-order and pairwise statistical correlations are quantified via mutual information, in quantum systems consisting of three pairwise interacting oscillators, that are subjected to a three-body Gaussian type potential. Variational wave functions are used for these calculations. The correlation measures are calculated in both position and momentum space, to examine their dependence on the coupling strength and width of the three-body potential. Results are presented for both positive and negative three-body potentials, and attractive and repulsive two-body ones. Extremal points are observed when the pair and higher-order measures are examined as a function of the coupling strength for positive three-body potentials. This illustrates that the magnitudes of these statistical correlations can be adjusted with the strength of the three-body potential. Higher-order mutual information is positive-valued in momentum space and negative-valued in position space, in systems with attractive pair and positive three-body potentials. The interpretation is that synergistic interactions among the three particles are dominant in momentum space while the redundant (pairwise) ones prevail in position space. These behaviours are reversed in systems with repulsive pair potentials and negative three-body ones. The demeanour of the correlation measures with respect to the width of the Gaussian potential is also examined. The extremal points that are present as a function of the coupling strength, are more pronounced for broader potentials, while they disappear for narrower potentials. The positions of these extremal points move to smaller coupling strengths, as the potential narrows. Trends in the one-, two-, and three-variable Shannon entropies in these systems are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Kutzelnigg, G. Del Re, G. Berthier, Phys. Rev. 172, 49 (1968)

    Article  ADS  Google Scholar 

  2. J.R. Vergara, P.A. Estévez, Neural Comput. Applic. 24, 175 (2014)

    Article  Google Scholar 

  3. M. Beraha, A.B. Metelli, M. Papini, A. Tirinzoni, M. Restelli, arXiv: 1907.07384v1 (2019)

  4. S. Panzeri, S.R. Schultz, A. Treves, E.T. Rolls, Proc. R. Soc. London, Ser. B 266, 1001 (1999)

    Article  Google Scholar 

  5. E. Schneidman, W. Bialek, M.J. Berry, J. Neurosci. 23, 11539 (2003)

    Article  Google Scholar 

  6. P.E. Latham, S. Nirenberg, J. Neurosci. 25, 5195 (2005)

    Article  Google Scholar 

  7. B.J. Killian, J.Y. Kravitz, M.K. Gibson, J. Chem. Phys. 127, 024107 (2007)

    Article  ADS  Google Scholar 

  8. P. Hayden, M. Headrick, A. Maloney, Phys. Rev. D 87, 046003 (2013)

    Article  ADS  Google Scholar 

  9. P. Hosur, X.-L. Qi, D.A. Roberts, B. Yoshida, JHEP 2016, 4 (2016)

    Article  Google Scholar 

  10. W. Beckner, Ann. Math. 102, 159 (1975)

    Article  MathSciNet  Google Scholar 

  11. I. Bialynicki-Birula, J. Mycielski, J. Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  12. C.E. Shannon, Bell Labs Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  13. T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley and Sons, New York, 1991)

  14. S. Watanabe, IBM J. Res. Dev. 4, 66 (1960)

    Article  Google Scholar 

  15. T.S. Han, Inf. Control 46, 26 (1980)

    Article  Google Scholar 

  16. H. Matsuda, Phys. Rev. E 62, 3096 (2000)

    Article  ADS  Google Scholar 

  17. H. Matsuda, Physica A 294, 180 (2001)

    Article  ADS  Google Scholar 

  18. W.J. McGill, Psychometrika 19, 97 (1954)

    Article  Google Scholar 

  19. S.J.C. Salazar, H.G. Laguna, R.P. Sagar, Phys. Rev. A 101, 042105 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.R. Gadre, S.B. Sears, S.J. Chakravorty, R.D. Bendale, Phys. Rev. A 32, 2602 (1985)

    Article  ADS  Google Scholar 

  21. R.J. Yáñez, W. van Assche, J.S. Dehesa, Phys. Rev. A 50, 3065 (1994)

    Article  ADS  Google Scholar 

  22. M. Hô, R.P. Sagar, D.F. Weaver, V.H. Smith Jr, Int. J. Quantum Chem. 56, 109 (1995)

    Article  Google Scholar 

  23. A. Grassi, G.M. Lombardo, N.H. March, R. Pucci, Int. J. Quantum Chem. 69, 721 (1998)

    Article  Google Scholar 

  24. J. Antolín, J.C. Angulo, S. López-Rosa, J. Chem. Phys. 130, 074110 (2009)

    Article  ADS  Google Scholar 

  25. L.M. Ghiringhelli, I.P. Hamilton, L. Delle Site, J. Chem. Phys. 132, 014106 (2010)

    Article  ADS  Google Scholar 

  26. M. Alipour, A. Mohajeri, Chem. Phys. 392, 105 (2012)

    Article  Google Scholar 

  27. E. Romera, J.S. Dehesa, J. Chem. Phys. 120, 8906 (2004)

    Article  ADS  Google Scholar 

  28. Q. Shi, S. Kais, J. Chem. Phys. 121, 5611 (2004)

    Article  ADS  Google Scholar 

  29. R. Atre, A. Kumar, N. Kumar, P.K. Panigrahi, Phys. Rev. A 69, 052107 (2004)

    Article  ADS  Google Scholar 

  30. KCh Chatzisavvas, ChC Moustakidis, C.P. Panos, J. Chem. Phys. 123, 174111 (2005)

    Article  ADS  Google Scholar 

  31. Á. Nagy, Chem. Phys. Lett. 556, 355 (2013)

    Article  ADS  Google Scholar 

  32. Á. Nagy, Int. J. Quantum Chem. 115, 1392 (2014)

    Article  Google Scholar 

  33. G.H. Sun, S.H. Dong, N. Saad, Ann. Phys. 525, 934 (2013)

    Article  MathSciNet  Google Scholar 

  34. S. Dong, G.H. Sun, S.H. Dong, J.P. Draayer, Phys. Lett. A 378, 124 (2014)

    Article  ADS  Google Scholar 

  35. X.D. Song, G.H. Sun, S.H. Dong, Phys. Lett. A 379, 1402 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. L. Delle Site, Int. J. Quantum Chem. 115, 1396 (2015)

    Article  Google Scholar 

  37. N. Mukerjee, A. Roy, A.K. Roy, Ann. Phys. 527, 825 (2015)

    Article  Google Scholar 

  38. C.H. Lin, Y.K. Ho, Chem. Phys. Lett. 633, 261 (2015)

    Article  ADS  Google Scholar 

  39. N. Mukerjee, A.K. Roy, Ann. Phys. 528, 412 (2016)

    Article  Google Scholar 

  40. M. Ghafourian, H. Hassanabadi, J. Korean Phys. Soc. 68, 1267 (2016)

    Article  ADS  Google Scholar 

  41. S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Chin. Phys. B 25, 040301 (2016)

    Article  Google Scholar 

  42. N. Flores-Gallegos, Chem. Phys. Lett. 720, 1 (2019)

    Article  ADS  Google Scholar 

  43. S. López-Rosa, A.L. Martín, J. Antolín, J.C. Angulo, Int. J. Quantum Chem. 119, e25861 (2019)

    Article  Google Scholar 

  44. C.R. Estañón, N. Aquino, D. Puertas-Centeno, J.S. Dehesa, Int. J. Quantum Chem. 120, e26192 (2020)

    Article  Google Scholar 

  45. S. Bera, S. Kumar Haldar, B. Chakrabarti, A. Trombettoni, V.K.B. Kota, Eur. J. Phys. D 74, 73 (2020)

    Article  ADS  Google Scholar 

  46. I.V. Toranzo, D. Puertas-Centeno, N. Sobrino, J.S. Dehesa, Int. J. Quantum Chem. 120, e26077 (2020)

    Article  Google Scholar 

  47. J. Wan, N. Guo, Entropy 22, 33 (2020)

    Article  ADS  Google Scholar 

  48. S. Hazra, Comp. Theo. Chem 1179, 112801 (2020)

    Article  Google Scholar 

  49. P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Int. J. Quantum Chem. 140, e26246 (2020)

    Google Scholar 

  50. A. Hertz, N.J. Cerf, J. Phys. A 52, 173001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  51. N.L. Guevara, R.P. Sagar, R.O. Esquivel, Phys. Rev. A 67, 012507 (2003)

    Article  ADS  Google Scholar 

  52. K.D. Sen, J. Katriel, J. Chem. Phys. 125, 074117 (2006)

    Article  ADS  Google Scholar 

  53. R. González-Férez, J.S. Dehesa, S.H. Patil, K.D. Sen, Physica A 388, 4919 (2009)

    Article  ADS  Google Scholar 

  54. S. Majumdar, N. Mukherjee, A.K. Roy, Chem. Phys. Lett. 687, 322 (2017)

    Article  ADS  Google Scholar 

  55. R.P. Sagar, N.L. Guevara, J. Chem. Phys. 123, 044108 (2005)

    Article  ADS  Google Scholar 

  56. H.G. Laguna, R.P. Sagar, Phys. Rev. A 84, 012502 (2011)

    Article  ADS  Google Scholar 

  57. H.T. Peng, Y.K. Ho, Entropy 17, 012502 (2015)

    Article  Google Scholar 

  58. N.J. Cerf, C. Adami, Phys. Rev. A 55, 3371 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  59. V.S. Yépez, R.P. Sagar, H.G. Laguna, Few-Body Syst. 58, 158 (2017)

    Article  ADS  Google Scholar 

  60. C.H. Schmickler, H.-W. Hammer, A.G. Volosniev, Phys. Lett. B 798, 135016 (2019)

    Article  MathSciNet  Google Scholar 

  61. A. Kievsky, M. Gattobigio, E. Garrido, J. Phys. Conf. Ser. 527, 012001 (2014)

    Article  Google Scholar 

  62. P.A. Bouvrie, A.P. Majtey, A.R. Plastino, M.P. Sánchez, J.S. Dehesa, Eur. Phys. J. D 66, 15 (2012)

    Article  ADS  Google Scholar 

  63. P. Kościk, A. Okopińska, Few-Body Syst. 54, 1637 (2013)

    Article  ADS  Google Scholar 

  64. N.L. Harshman, A.C. Knapp, Ann. Phys. 412, 168003 (2020)

    Article  Google Scholar 

  65. P. Saurabh, P.R. Johnson, E. Tiesinga, Phys. Rev. A 93, 4 (2016)

    Google Scholar 

  66. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 86, 042513 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto G. Laguna.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, S.J.C., Laguna, H.G. & Sagar, R.P. Statistical correlations in quantum systems with explicit three-body interactions. Eur. Phys. J. D 74, 241 (2020). https://doi.org/10.1140/epjd/e2020-10435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10435-6

Keywords

Navigation