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Abstract. In nonlinear electromagnetism in vacuum, a classical electromagnetic wave itself can generate
another wave. A classical field can become a source for a nonlinear correction via the polarization and
magnetization of vacuum. We elucidate that a resonant generation is intrinsic to the theoretical structure
of nonlinear electromagnetism. The resonance can take place when the phases, or the cycles of the source
and the nonlinear correction match. We demonstrate two specific systems as examples. For a plane wave
and constant fields, nonlinear corrective electromagnetic fields are resonantly enhanced with distance. It
is shown in a stationary special solution. For more realistic system, we have considered the case of a
standing wave in a cavity with an appropriate initial and boundary conditions. As a result, the corrections
are resonantly enhanced with time. The resonance effect in the cavity is shown to be observed more
effectively by combining a static magnetic flux density. We have evaluated the resonant effect using concrete
parameters of current experiments. The demonstrated resonance can be combined with existing proposals
to enable experimental detection of nonlinear optical effects of vacuum easier.

1 Introduction

Extended electromagnetic models have been considered
[1–3]. These theories describe the electromagnetic nonlin-
earity of vacuum and have recently drawn attention across
several fields, such as photon-photon scattering in quan-
tum mechanics [4], radiation from stars in astrophysics
[5–7], energy levels of hydrogen atom in atomic physics
[8,9], and high intensity laser physics [10–12], where
uncharted range of strong electromagnetic fields should
be properly treated. Several tests have been performed
[13,14] and many proposals are considered [15–21], how-
ever, an experimental observation of the nonlinear vacuum
has remained a challenge.

Two reasons can account for the difficulty. One is that
the nonlinearity requires extremely strong electromagnetic
fields, e.g., the expected constraint given by the Schwinger
limit Esch ≈ 1.32 × 1018(N/C) [3]. Another is that the
nonlinear effects depend on electromagnetic fields through
two Lorentz invariants [22], and not on energy density. For
example, these invariants become zero in a plane wave
regardless of the amplitude. It can easily occur that the
energy density is large but the invariants are small. This
theoretical structure has become a restriction on designing
an efficient experimental setup.

In order to overcome the difficulty, we theoretically
investigate nonlinear corrections that stem from classical
electromagnetic fields. We show that, in a specific physical
system, the nonlinear correction can increase resonantly
and the resonance is intrinsic to nonlinear electromag-
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netism. We also describe the reason why the resonance
can be utilized for a feasible experiment of nonlinear
vacuum.

2 Notations

For simplicity, we normalize the electromagnetic functions
by the electric constant ε0 and magnetic constant µ0.
The electric field is multiplied by ε

1/2
0 , the polarization

of vacuum is divided by ε1/2
0 , the magnetic flux density is

divided by µ1/2
0 , and the magnetization of vacuum is mul-

tiplied by µ
1/2
0 . In addition, arguments of the functions

are omitted when it is not confusing.
Using the electric field E and magnetic flux density B,

we introduce two Lorentz invariants by F = E2 −B2 and
G = E ·B. The nonlinear electromagnetic Lagrangian we
consider herein is given by

L =
1
2
F + C2,0F

2 + C0,2G
2, (1)

where C2,0 and C0,2 are nonlinear parameters [23].
Although this study is not limited to the Heisenberg-Euler
model, we use the values of the model for several quanti-
tative evaluations, i.e., C(HE)

2,0 = 1.665× 10−30(m3/J) and

C
(HE)
0,2 = 7C(HE)

2,0 [3].
The polarization and magnetization of vacuum are

defined by

P = 4C2,0FE + 2C0,2GB,

M = −4C2,0FB + 2C0,2GE,
(2)
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respectively. Then, the nonlinear Maxwell’s equations in
this study are given by

∇ ·B = 0,

∇×E + c−1∂tB = 0,
∇ ·E = −∇ · P ,
∇×B − c−1∂tE = c−1∂tP +∇×M ,

(3)

where c is the speed of light and ∂t expresses the partial
differentiation with respect to time. If the right-hand sides
of the third and fourth equations are replaced by zero, the
above equations become classical Maxwell’s equations.

A classical electromagnetic field that satisfies classi-
cal Maxwell’s equations does not always satisfy nonlinear
Maxwell’s equations. In this case, the total electromag-
netic field can be expressed by a sum of classical terms
and a nonlinear corrective term such as E = Ec +En and
B = Bc + Bn, where the subscripts c and n exhibit the
classical and nonlinear corrective terms, respectively. We
would like to design a physical system where an effect of
the nonlinear Lagrangian appears more strongly. For this
purpose, the larger corrective terms are preferable.

In the present study, both P and M are cubic with
respect to E and B. Thus, considering the entire P and
M is complicated. However, in many experimental situa-
tions, the classical terms are overwhelmingly larger than
the corrective terms. Then, the main contributions to P
and M will be given only by the classical terms. Let
Fc = E2

c − B2
c and Gc = Ec ·Bc, such contributions can

be expressed by

P (0) = 4C2,0FcEc + 2C0,2GcBc,

M (0) = −4C2,0FcBc + 2C0,2GcEc,
(4)

and P ≈ P (0) and M ≈ M (0) will hold, respectively.
Then, the corresponding corrective terms of En and Bn

will be the leading term in the nonlinear correction. We
call them as the minimum corrective terms and denote as
E(0)

n and B(0)
n . That is, En ≈ E(0)

n and Bn ≈ B(0)
n . The

minimum corrective terms are related to P (0) and M (0),
and satisfy the following equations,

∇ ·B(0)
n = 0,

∇×E(0)
n + c−1∂tB

(0)
n = 0,

∇ ·E(0)
n = −∇ · P (0),

∇×B(0)
n − c−1∂tE

(0)
n = c−1∂tP

(0) +∇×M (0).

(5)

These are Maxwell’s equations for E(0)
n and B(0)

n .
Although we use “minimum corrective terms” expressly,
these terms are frequently considered in the literature
[11,24–26]. As can be seen from equations (4) and (5),
the linearization is done by replacing all E and B in P
and M by the classical terms. On the other hand, there
is another procedure of the linearization, i.e., one of each
cubic term is replaced by the nonlinear correction term. A
change of the refractive index [23] is a characteristic effect
of the linearization, and note that it is beyond the scope

of the minimum corrective terms. By eliminating B(0)
n ,

using

S(0) = ∇(∇ · P (0))− c−2∂2
t P (0) − c−1∂t∇×M (0), (6)

a wave equation for E(0)
n is obtained as,

(4− c−2∂2
t )E(0)

n = −S(0). (7)

This wave equation cannot be treated alone because its
solution can violate the third equation in equation (5).
However, this wave equation is suggestive and will be a
guide of this study. We can expect that a sufficient condi-
tion that the minimum corrective terms increase spatially
or temporally will be given by

S(0) 6= 0 and (4− c−2∂2
t )S(0) = 0. (8)

Such a non-zero source term S(0) itself is a solution of
the wave equation. This means that the phases, or the
cycles, of the source and the minimum corrective elec-
tric field can match locally, and therefore, the source can
always operate to increase the amplitude of the corrective
electric field. If the source term satisfies above conditions,
it can act as the resonant external force, in the sense of
classical mechanics. We use the term “resonance” in this
context. Note that this word is used only within the range
of minimum corrective terms. Then the main purposes of
this study are constructing such classical terms, confirm-
ing that E(0)

n and B(0)
n surely increase resonantly, and

evaluating the applicable range of this approximation. In
the following, we see several examples. However, note that
the choice of the classical term is not essential. It is also
possible to consider more complicated form to reproduce
an experimental situation and also in this case, the main
problem is the conditions in equation (8).

3 Stationary minimum corrections

First, we consider stationary classical terms and the cor-
responding minimum corrective terms through a station-
ary special solution of equation (5). The special solution is
suitable to study an effect of nonlinear Lagrangian because
it does not appear in classical electromagnetism.

A simple classical term is a plane wave. One mode is
characterized by (ω,k), where ω is the frequency, k is the
wave vector, and they satisfy ω = c|k| 6= 0. Using constant
vectors Ep and Bp, the electric field and magnetic flux
density are given by Ep exp[i(k ·x−ωt)] and Bp exp[i(k ·
x − ωt)], respectively. They satisfy k ·Ep = 0 and Bp =
k̂ ×Ep, where k̂ = k/|k|.

Because P (0) and M (0) are cubic with respect to
the classical terms, we consider three modes, i.e.,
(ω1,k1), (ω2,k2), and (ω3,k3). Let K = k1 + k2 + k3

and Ω = ω1 + ω2 + ω3. In the case of |K| 6= Ω/c, a sta-
tionary special solution of equation (5) is proportional to
exp[i(K · x − Ωt)] and it is bounded in the entire space
and time. In the case of |K| = Ω/c, the right-hand sides
of the third and fourth equations in equation (5) become
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zero and a stationary special solution is also zero. Because
the special solution of E(0)

n is bounded, the only method
to enlarge it is to enlarge the classical term, as is required
in many previous studies [11,27].

In the next case, the classical term is composed of a
plane wave and constant fields. Each term of P (0),M (0),
and S(0) can be classified into the following four types.
In the first type, all three of the electric field and mag-
netic flux density are those of the plane wave. In the sec-
ond type, two are the plane wave and one is the constant
fields. In the third type, one is the plane wave and two are
the constant fields. In the fourth type, all three are the
constant fields. For the first type, we already stated that
a stationary special solution is bounded. The same result
is obtained for the second type. In addition, the minimum
corrective terms are clearly zero for the fourth type.

We then calculate for the remaining third type. We
express a plane wave by Ep exp[i(k · x − ωt)] and
Bp exp[i(k ·x−ωt)]. The constant electric field and mag-
netic flux density are independently given by Es and Bs,
respectively. Let Fs = E2

s−B2
s and Gs = Es ·Bs. Defining

P̃ 0 = 8C2,0(Ep ·Es −Bp ·Bs)Es

+ 2C0,2(Ep ·Bs + Es ·Bp)Bs, (9)

we obtain P (0) = P 0 exp[i(k · x − ωt)],where P 0 =
4C2,0FsEp + 2C0,2GsBp + P̃ 0. Similarly, defining

M̃0 = −8C2,0(Ep ·Es −Bp ·Bs)Bs

+ 2C0,2(Ep ·Bs + Es ·Bp)Es, (10)

we obtain M (0) = M0 exp[i(k · x − ωt)], where M0 =
−4C2,0FsBp + 2C0,2GsEp + M̃0.

In P (0) and M (0), the terms that contain Fs or Gs do
not work as a source in equation (5). Therefore, they make
no contribution for the minimum corrective terms. On the
other hand, P̃ 0 and M̃0 can be sources and we obtain

S(0) = k2
[
P̃ 0 − k̂(k̂ · P̃ 0)− k̂ × M̃0

]
ei(k·x−ωt). (11)

By appropriately choosing the constant fields, this satis-
fies equation (8). We finally obtain a stationary special
solution as

E(0)
n =

{
ik · x

2

[
P̃ 0 − k̂(k̂ · P̃ 0)− k̂ × M̃0

]
− k̂(k̂ · P̃ 0)

}
ei(k·x−ωt),

B(0)
n =

1 + ik · x
2

k̂ ×
(
P̃ 0 − k̂ × M̃0

)
ei(k·x−ωt).

(12)

As is expected, E(0)
n increases with distance provided that

the direction is not orthogonal to k and the quantity
within the square brackets is not zero. Concurrently, B(0)

n
increases with distance. Note that the same square brack-
ets appear in equation (11). While the minimum correc-
tive terms are good approximation, the electric field and

magnetic flux density can increase. Naturally, this solu-
tion does not directly assert that the nonlinear correction
diverges. If the minimum corrective terms become suffi-
ciently large, we must then consider the terms that were
initially ignored, such as another linearization. Thus, the
divergence will be restricted. In addition, note that equa-
tion (12) is just a special solution of the wave equation
in equation (7). The solution for a physical problem is
obtained by solving with appropriate initial and bound-
ary conditions. The homogeneous solution is specified by
the initial and boundary conditions, and the solution is the
sum of the homogeneous solution and the special solution.
Therefore, whether the resonant enhancement is possible
must be discussed by including the homogeneous solu-
tion. However, the homogeneous solution never becomes
the same function as the special solution and therefore,
the resonant enhancement appears in the special solution
may not be cancelled.

For the moment, let us see the special solution in equa-
tion (12) in detail. Firstly, we evaluate the applicable limit
of distance where the minimum corrective terms are good
approximation. For simplicity, we suppose Es = 0, Ep =
Bp � Bs, the plane wave propagates to the x direction,
and Ep and Bs have only the y component. In this case,
only the y component is nonzero for E(0)

n and it is given
by E

(0)
ny = ikxC0,2EpB

2
s exp[i(kx − ωt)]. The minimum

corrective terms must be much smaller than the classical
terms. It can be expressed as k|x|C0,2EpB

2
s � Ep and

converting to SI units, we obtain

|x| � λ

2πC0,2µ
−1
0 B2

s

, (13)

where λ = 2π/k is the wavelength. If a plane wave and
a constant magnetic flux density are given in a distance
expressed in the right-hand side, a resonantly increased
corrective electric field will be observed. Provided that
k|x| � 1, the same condition is derived from the magnetic
flux density.

For example, let us evaluate for Bs = 1 (T) and
λ = 400 (nm), and supposing the above calculation is
valid while |E(0)

n | increases to Ep/10. If we denote x0.1

as the necessary distance for the resonant increase, then
x0.1 ≈ 6.86 × 1014 (m). Imposing in this distance is
not experimentally realistic. Thus, even if equation (12)
is a part of a physical solution with appropriate initial
and boundary conditions, the resonant effect will not be
detectable in an experimental length scale.

The calculation so far is limited in the applicable range
of the linearization of the minimum corrective terms. The
plane wave has a classical dispersion relation and the res-
onant solution in equation (12) is obtained. Beyond this
approximation, the plane wave in the static magnetic flux
density is no longer classical, i.e., its refractive index can
differ from unity, as can be seen from another lineariza-
tion. However, it does not lose the essence of the reso-
nance. For example, the resonance can still be expected
in the following system. A static magnetic flux density
has only the y component and exists only in x ≥ 0. The
incident light propagates along the x axis and it is a clas-
sical plane wave in x < 0. In x ≥ 0, it will eventually
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be modulated by the nonlinear effect of the magnetic flux
density. However, at sufficiently small positive x, such a
modulation is negligibly small, and therefore, the source
term S(0) will approximately satisfy equation (8) and the
minimum corrective terms behave as resonant.

Within the approximation of the minimum corrective
term, the essence of the resonance is an existence of S(0)

such that it satisfies equation (8). Equation (12) is a con-
cise demonstration. However, for more precise calculation,
the combination of a static magnetic flux density and a
plane wave will require a discussion beyond the approxi-
mation and it makes the essence of this study obscure.

Then, in the next section, we consider another system
where the static magnetic flux density and plane wave in
the entire space do not appear; besides, the approximation
of the minimum corrective term is assured.

4 Minimum corrections in one-dimensional
cavity

In addition to the above reason, to demonstrate that the
resonance is not only a mathematical solution but also
a physical solution, we herein consider a one-dimensional
cavity with appropriate initial and boundary conditions.
In the cavity, the classical term is not a plane wave but
a standing wave. Hence, F is not identically zero, and as
we show, the resonance can take place without a constant
field.

Two mirrors are located at x = 0 and x = l. The interior
of the cavity is 0 ≤ x ≤ l. All functions depend only on x
and t. Let k be the wavenumber and we suppose kl = πn
for a certain natural number n. The frequency is given by
ω = ck. The unit vectors of the y and z directions are
expressed by ey and ez, respectively.

With an amplitude A, the standing electric field and
magnetic flux density are given by

Ec = A sin kx sinωtey, Bc = A cos kx cosωtez. (14)

Although these are classical standing waves, they do not
satisfy the nonlinear Maxwell’s equations in equation (3).
Thusly, the nonlinear corrections appear. We obtain

S(0) = 2k2C2,0A
3( sin 3kx sinωt− 3 sin kx sin 3ωt

+ 2 sin kx sinωt)ey. (15)

Note that the third term in the parentheses of the right-
hand side satisfies equation (8).

We give the initial and boundary conditions on the min-
imum corrective terms. At the initial time t = 0, they
must be much smaller than A. Then, we suppose the ini-
tial distributions as E(0)

n (x, 0) = 0 and B(0)
n (x, 0) = 0.

The boundary conditions at x = 0 and x = l depend
on the property of the mirrors. For simplicity, we sup-
pose that the mirrors are perfect conductors. In this case,
the components of the electric field parallel to the mir-
ror surface must be zero. Similarly, the component of the
magnetic flux density vertical to the mirror surface must
be zero. Therefore, the boundary conditions are given by

E
(0)
ny (0, t) = 0, E(0)

ny (l, t) = 0, E(0)
nz (0, t) = 0, E(0)

nz (l, t) =
0, B(0)

nx (0, t) = 0, and B
(0)
nx (l, t) = 0. These standard ini-

tial and boundary conditions are sufficient for the unique
solution [28]. Finally, we obtain as,

E(0)
n (x, t) = C2,0A

3

{
sin kx

[
3

4
(sin 3ωt− 3 sin ωt)− 2ωt cos ωt

]

+
1

4
sin 3kx(sin ωt− 3 sin 3ωt)

}
ey,

B(0)
n (x, t) = C2,0A

3

{
cos kx

[
1

4
(cos 3ωt− cos ωt) + 2ωt sin ωt

]

+
3

4
cos 3kx(cos ωt− cos 3ωt)

}
ez. (16)

Note that ωt cosωt appears in E(0)
n and ωt sinωt appears

in B(0)
n . As we expected, the resonant effect is represented

as a temporal function. The amplitudes of both E(0)
n and

B(0)
n increase with time. Although this equation may sug-

gest that the energy increases infinitely, it is not correct.
While the minimum corrective terms are good approxima-
tions, their energies are just a small fraction of the total
energy. By considering the entire P , M , and nonlinear
corrections, the total energy is conserved.

We next evaluate the time when the minimum correc-
tive terms can be a good approximation, i.e., both |E(0)

n |
and |B(0)

n | are much smaller than A. It can be given by
2C2,0A

3ωt� A, i.e.,

t� 1
2C2,0A2ω

. (17)

In this condition, a derivative of the minimum cor-
rective terms is much smaller than the magnitude of
the corresponding derivative of the classical terms, e.g.,
|∂tE

(0)
n | � ωA. Therefore, the above calculation may be a

good approximation. The right-hand side of equation (17)
serves as a threshold of the applicable limit and a guide
for the necessary time to sufficiently increase the mini-
mum corrective terms. A large resonant effect will be more
rapidly realized by shortening this value. If the necessary
time is shortened, the number of reflection decreases and
unwanted effects such as mirror heating or energy loss by
mirror surfaces will be restricted.

For example, we evaluate by supposing the above cal-
culation is valid for |E(0)

n | ≤ A/10. For converting to SI
units, A2 is replaced by ε0E2

a, where Ea is the amplitude of
the standing electric field. Because a standing wave is fre-
quently used in modern experiments of optical lattice [29],
we evaluate the applicable limit by using the reference.
A typical wavelength and intensity can be λ = 400 (nm)
and cε0E

2
a ≈ 1010 (W/m2), respectively. In this case, the

evaluated time can exceed a thousand year. This value is
understandable because the resonant effect has not been
reported in such experiments. To observe the resonance,
an experimental set up will be optimized for this purpose
depending on its advantage. For example, if a sensitive
measurement is possible, a short time resonance may be
sufficient. On the other hand, if the system can be kept
for a long time, the sensitive measurement may not be
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required, rather, it is sufficient to wait for the nonlinear
correction to become large.

A more rigorous and realistic calculation will be
required for the design of an experimental setup. For
example, all the initial values are zero and the input
to generate the classical standing wave is given as the
boundary conditions at the mirror surface, not as in equa-
tion (14). Provided that the input is completed in suffi-
ciently short time, a similar result will be obtained and
equation (17) can be used as the applicable limit.

In an experimental viewpoint, the generation and main-
tenance of a standing wave will become difficult as inten-
sity increases. On the other hand, the value of the right-
hand side of equation (17) becomes too large for a small
intensity. In such a case, a strong constant magnetic flux
density would be used for the shortening. If there is an
external constant magnetic flux density Bs = Bsez, the
amplitude of the resonant part of the minimum corrective
electric field is given by 2C2,0A

(
A2 + 2B2

s

)
ωt. Therefore,

converting to SI units, the applicable limit in this case is
evaluated as

t� 1
2C2,0

(
ε0E2

a + 2µ−1
0 B2

s

)
ω
. (18)

As a value of strong static magnetic flux density, we use
Bs = 17.6 (T) [30,31]. Substituting this magnetic flux
density and the electric field corresponds to the inten-
sity of 1010 (W/m2) into the right-hand side of equa-
tion (18), the evaluated applicable limit is about 1.3×105

(s). According to reference [30], the magnetic flux density
can be retained about 10 min which is within the appli-
cable limit. Then, at t = 600 (s), the ratio of the ampli-
tude of the resonance to the classical standing wave is
2C2,0

(
ε0E

2
a + 2µ−1

0 B2
s

)
ωt ≈ 4.6× 10−3. This ratio would

be distinguishable by a current sensitive measurement.
It will be promising to evaluate the resonant effect by
considering more realistic conditions for an experimental
detection.

It may be worth referring to the pulsed magnetic flux
density. The pulsed magnetic flux density can exceed
102 (T) [32] and 103 (T) [33]. These systems should not be
considered as static, while the effect of such strong fields
will be valuable.

5 Final remarks

In nonlinear Maxwell’s equations, an electromagnetic
wave itself can be a source for another electromagnetic
wave. We have utilized this property and shown that a
classical electromagnetic wave can be a resonant source
for the nonlinear corrective terms. The essence is to con-
struct the source term S(0) satisfying equation (8). For
a stationary classical term, it was shown that a special
solution can increase with distance. Within the applicable
range of the minimum corrective terms, a nonzero value of
the square brackets in equation (11) is a sufficient condi-
tion for the resonance. The resonant effect can also be real-
ized with time, such as shown in a one-dimensional cavity.

The minimum corrective terms are solved with the initial
and boundary conditions and given by equation (16). To
obtain the solution, we have set the initial distributions
as zero. Although they must be much smaller than the
amplitude of the classical term, they may not be zero.
For any initial distributions that are compatible with the
boundary conditions, equation (5) has the unique solution
and it also shows the resonant enhancement. In particular,
the applicable limit can be given as the same condition as
equation (17).

Throughout the study, we have used the word “reso-
nance”. In general, a resonance can be measured by the
quality factor. To calculate the value in the present study,
we need to evaluate the energy flow from the classical term
to the nonlinear corrective term. For example, in the cav-
ity system, such a calculation requires much longer time
than the applicable limit shown in equation (17). There-
fore, calculating the quality factor cannot be completed
within the present approximation. In such a long time
scale, the corrective term can be comparably large and
the energy will flow bidirectionally between the classical
and corrective terms. Thus, “resonance” is not always suit-
able. Therefore, we have limited to use within the present
approximation. For example, “resonance in a short range”
will be more precise to describe the phenomenon.

The present study can be regarded as a generalization
of a resonance once investigated [24]. An important dif-
ference is that we have elucidated that the resonance is
intrinsic to nonlinear Maxwell’s equations. The resonance
does not necessarily require a specific physical configura-
tion, as we have shown for the classical term that consists
of a plane wave and constant fields. Although we have also
calculated for a cavity system, it was only to illustrate an
example of a closed light path and not essential to the
resonance. A similar resonance can be easily found in a
two-dimensional cavity.

We have already mentioned that the resonance does
not continue infinitely and evaluated the applicable limit.
Beyond the applicable limit is also of interest because
the nonlinearity directly appears [34–37]. In particular,
different types of resonance can be expected in refer-
ence [38] and in a self-focusing (an analogy will be found
in Ref. [39]).

In the present study, the nonlinear Lagrangian is limited
to the quadratic form with respect to F and G. Therefore,
the resonant effect can be utilized to detect the nonlin-
ear optical effect of vacuum but may not directly provoke
the pair production. However, if a similar calculation can
be done in the Lagrangian including higher order terms,
unexpected effects can be found.

Because of the resonance, the nonlinear corrective
terms can increase with long distance or long time. This
feature is remarkably different from many considered
nonlinear optical effects where the maximum effect is
limited by the magnitude of the input classical terms.
Considering the origin and simplicity of the resonance,
the conditions and results shown in this study can be
combined with existing experimental proposals and shall
contribute to realistic experimental detection of nonlinear
vacuum.
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