Skip to main content
Log in

Quantum phase transition and Berry phase in an extended Dicke model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate quantum phase transitions, quantum criticality, and Berry phase for the ground state of an ensemble of non-interacting two-level atoms embedded in a non-linear optical medium, coupled to a single-mode quantized electromagnetic field. The optical medium is pumped externally through a classical electric field, so that there is a degenerate parametric amplification effect, which strongly modifies the field dynamics without affecting the atomic sector. Through a semiclassical description the different phases of this extended Dicke model are described. The quantum phase transition is characterized with the expectation values of some observables of the system as well as the Berry phase and its first derivative, where such quantities serve as order parameters. It is remarkable that the model allows the control of the quantum criticality through a suitable choice of the parameters of the non-linear optical medium, which could make possible the use of a low intensity laser to access the superradiant region experimentally.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev, “Quantum phase transitions”, in Handbook of Magnetism and Advanced Magnetic Materials (2007)

  2. L. Carr, Understanding Quantum Phase Transitions (CRC Press, 2010)

  3. M.A. Bastarrachea-Magnani, B. López-del Carpio, S. Lerma-Hernández, J.G. Hirsch, Phys. Scr. 90, 068015 (2015)

    Article  ADS  Google Scholar 

  4. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  5. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  6. M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  7. K. Hepp, E.H. Lieb, Annal. Phys. 76, 360 (1973)

    Article  ADS  Google Scholar 

  8. Y.K. Wang, F. Hioe, Phys. Rev. A 7, 831 (1973)

    Article  ADS  Google Scholar 

  9. C. Emary, T. Brandes, Phys. Rev. E 67, 066203 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. Li, Z. Wang, C. Sun, Phys. Rev. A 74, 023815 (2006)

    Article  ADS  Google Scholar 

  11. G. Chen, Z.-Y. Xue, L. Wei, J.-Q. Liang, Europhys. Lett. 86, 44002 (2009)

    Article  ADS  Google Scholar 

  12. S.-C. Li, H.-L. Liu, X.-Y. Zhao, Eur. Phys. J. D 67, 250 (2013)

    Article  ADS  Google Scholar 

  13. R.R. Robles, S. Chilingaryan, B. Rodrguez-Lara, R.-K. Lee, Phys. Rev. A 91, 033819 (2015)

    Article  ADS  Google Scholar 

  14. J. Rodriguez, S. Chilingaryan, B. Rodrguez-Lara, Phys. Rev. A 98, 043805 (2018)

    Article  ADS  Google Scholar 

  15. B.M. Rodrguez-Lara, R.-K. Lee, J. Opt. Soc. Am. B 27, 2443 (2010)

    Article  ADS  Google Scholar 

  16. X. Guo, Z. Ren, Z. Chi, J. Opt. Soc. Am. B 28, 1245 (2011)

    Article  ADS  Google Scholar 

  17. G.-L. Zhu, X.-Y. Lü, S.-W. Bin, C. You, Y. Wu, Front. Phys. 14, 52602 (2019)

    Article  ADS  Google Scholar 

  18. P. Kirton, M.M. Roses, J. Keeling, E.G. Dalla Torre, Adv. Quantum Technol. 2, 1800043 (2019)

    Article  Google Scholar 

  19. K. Rzażewski, K. Wódkiewicz, W. Żakowicz, Phys. Rev. Lett. 35, 432 (1975)

    Article  ADS  Google Scholar 

  20. K. Rzażewski, K. Wódkiewicz, Phys. Rev. A 13, 1967 (1976)

    Article  ADS  Google Scholar 

  21. I. Bialynicki-Birula, K. Rzażewski, Phys. Rev. A 19, 301 (1979)

    Article  ADS  Google Scholar 

  22. J. Knight, Y. Aharonov, G. Hsieh, Phys. Rev. A 17, 1454 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Vukics, P. Domokos, Phys. Rev. A 86, 053807 (2012)

    Article  ADS  Google Scholar 

  24. A. Vukics, T. Grießer, P. Domokos, Phys. Rev. Lett. 112, 073601(2014)

    Article  ADS  Google Scholar 

  25. F. Dimer, B. Estienne, A. Parkins, H. Carmichael, Phys. Rev. A 75, 013804 (2007)

    Article  ADS  Google Scholar 

  26. D. Nagy, G. Kónya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104, 130401 (2010)

    Article  ADS  Google Scholar 

  27. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  28. M.V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984)

    Article  ADS  Google Scholar 

  29. A. Hamma, Preprint arXiv:quant-ph/0602091 (2006)

  30. A.C. Carollo, J.K. Pachos, Phys. Rev. Lett. 95, 157203 (2005)

    Article  ADS  Google Scholar 

  31. H. Cui, K. Li, X. Yi, Phys. Lett. A 360, 243 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Plastina, G. Liberti, A. Carollo, Europhys. Lett. 76, 182 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Chen, J. Li, J.-Q. Liang, Phys. Rev. A 74, 054101 (2006)

    Article  ADS  Google Scholar 

  34. X. Peng, S. Wu, J. Li, D. Suter, J. Du, Phys. Rev. Lett. 105, 240405 (2010)

    Article  ADS  Google Scholar 

  35. M. Atala, M. Aidelsburger, J.T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, I. Bloch, Nat. Phys. 9, 795 (2013)

    Article  Google Scholar 

  36. G. D’Ariano, M. Paris, M. Sacchi, Nuovo Cimento Soc. Ital. Fis. B 114, 03 (1999)

    Google Scholar 

  37. M. Hillery, Opt. Commun. 62, 135 (1987)

    Article  ADS  Google Scholar 

  38. S. Huang, G.S. Agarwal, Phys. Rev. A 80, 033807 (2009)

    Article  ADS  Google Scholar 

  39. C.J. Zhu, L.L. Ping, Y.P. Yang, G.S. Agarwal, Phys. Rev. Lett. 124, 073602 (2020)

    Article  ADS  Google Scholar 

  40. O. Castaños, E. Nahmad-Achar, R. López-Peña, J.G. Hirsch, Phys. Rev. A 84, 013819 (2011)

    Article  ADS  Google Scholar 

  41. W.-M. Zhang, R. Gilmore, et al. Rev. Mod. Phys. 62, 867 (1990)

    Article  ADS  Google Scholar 

  42. E. Nahmad-Achar, O. Castanos, R. López-Peña, J.G. Hirsch, Phys. Scr. 87, 038114 (2013)

    Article  ADS  Google Scholar 

  43. T.C. Jarrett, A. Olaya-Castro, N.F. Johnson, Europhys. Lett. 77, 34001 (2007)

    Article  ADS  Google Scholar 

  44. C.C. Gerry, Phys. Rev. A 37, 3619 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  45. C.C. Gerry, J. Kiefer, Phys. Rev. A 41, 27 (1990)

    Article  ADS  Google Scholar 

  46. O. Castaños, E. Nahmad-Achar, R. López-Peña, J.G. Hirsch, Phys. Rev. A 83, 051601 (2011)

    Article  ADS  Google Scholar 

  47. M. Bastarrachea-Magnani, S. Lerma-Hernández, J. Hirsch, Phys. Rev. A 89, 032101 (2014)

    Article  ADS  Google Scholar 

  48. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  49. S. Dusuel, J. Vidal, Phys. Rev. Lett. 93, 237204 (2004)

    Article  ADS  Google Scholar 

  50. J.G. Hirsch, O. Castaños, R. López-Peña, E. Nahmad-Achar, Phys. Scr. 87, 038106 (2013)

    Article  ADS  Google Scholar 

  51. T. Brandes, Phys. Rep. 408, 315 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo A. Estrada Guerra.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, C.A.E., Mahecha-Gómez, J. & Hirsch, J.G. Quantum phase transition and Berry phase in an extended Dicke model. Eur. Phys. J. D 74, 200 (2020). https://doi.org/10.1140/epjd/e2020-10332-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10332-0

Keywords

Navigation