Skip to main content
Log in

A protocol of potential advantage in the low frequency range to gravitational wave detection with space based optical atomic clocks

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A recent proposal describes space based gravitational wave (GW) detection with optical lattice atomic clocks [S. Kolkowitz, I. Pikovsk, N. Langellier, M.D. Lukin, R.L. Walsworth, J. Ye, Phys. Rev. D 94, 124043 (2016)]. Based on their setup, we propose a new measurement method for gravitational wave detection in low frequency with optical lattice atomic clocks. In our method, n successive Doppler signals are collected and the summation for all these signals is made to improve the sensitivity of the low-frequency GW detection. In particular, the improvement is adjustable by the number of Doppler signals, which is equivalent to that the length between two atomic clocks is increased. Thus, the same sensitivity can be reached but with shorter distance, even though the acceleration noises lead to failing to achieve the anticipated improvement below the inflection point of frequency which is determined by the quantum projection noise. Our result is timely for the ongoing development of space-born observatories aimed at studying physical and astrophysical effects associated with low-frequency GW.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kolkowitz, I. Pikovsk, N. Langellier, M.D. Lukin, R.L. Walsworth, J. Ye, Phys. Rev. D 94, 124043 (2016).

    Article  ADS  Google Scholar 

  2. K.S. Thorne, in: Three Hundred Years of Gravitation, edited by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, England, 1987).

  3. B.P. Abbott, et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  4. B.P. Abbott, et al., Phys. Rev. Lett. 116, 241103 (2016).

    Article  ADS  Google Scholar 

  5. B.P. Abbott, et al., Phys. Rev. Lett. 118, 221101 (2017).

    Article  ADS  Google Scholar 

  6. B.P. Abbott, et al., Phys. Rev. Lett. 119, 141101 (2017).

    Article  ADS  Google Scholar 

  7. B.P. Abbott, et al., Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  8. P. Amaro-Seoane, S. Aoudia, S. Babak, et al., Class. Quantum Grav. 29, 124016 (2012).

    Article  ADS  Google Scholar 

  9. P. Amaro-Seoane, S. Aoudia, S. Babak, et al., https://arXiv:1201.3621.

  10. LISA: Laser Interferometer Space Antenna for the detection and observation of gravitational waves, Pre-Phase A Report, Max-Planck-Institute, MPQ 208, 1996..

  11. P. Amaro-Seoane, et al., Class Quantum Grav. 29, 124016 (2012).

    Article  ADS  Google Scholar 

  12. P. Amaro-Seoane et al., https://arXiv:1702.00786.

  13. J. Luo, et al., Class. Quantum Grav. 33, 035010 (2016).

    Article  ADS  Google Scholar 

  14. W.R. Hu, Y.L. Wu, Nat. Sci. Rev. 4, 685 (2017).

    Article  Google Scholar 

  15. D.C. Backer, R.W. Hellings, Ann. Rev. Astro. Astrophys. 24, 537 (1986).

    Article  ADS  Google Scholar 

  16. J. Cordes, R. Shannon, https://arXiv:1010.3785.

  17. J.W. Armstrong, Liv. Rev. Relativ. 9, E2 (2006).

    Article  ADS  Google Scholar 

  18. R.F.C. Vessot, et al., Phys. Rev. Lett. 45, 2081 (1980).

    Article  ADS  Google Scholar 

  19. W.J. Kaufmann, Nature 327, 157 (1970).

    Article  ADS  Google Scholar 

  20. R.W. Davies, Issues in gravitational wave detection with space missions, in Gravitational Waves and Radiations, Proceedings of the international conference, Université de Paris VΠ, Paris, France, June 18’22, 1973 (CNRS, Paris, France, 1974), Vol. 220, pp. 33–45.

  21. J.C. Breidenthal, T.A. Komarek Radio tracking system, in: Deep Space Telecommunications Systems Engineering, edited by J.H. Yuen (Plenum Press, New York, 1983.

  22. F.B. Estabrook, H.D. Wahlquist, Gen. Relativ. Gravit. 6, 439 (1975).

    Article  ADS  Google Scholar 

  23. M. Bishof, X. Zhang, M.J. Martin, J. Ye, Phys. Rev. Lett. 111, 093604 (2013).

    Article  ADS  Google Scholar 

  24. P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Rev. Lett. 110, 171102 (2013).

    Article  ADS  Google Scholar 

  25. J.M. Hogan, M.A. Kasevich, Phys. Rev. A 94, 033632 (2016).

    Article  ADS  Google Scholar 

  26. S.-W. Chiow, J. Williams, N. Yu, Phys. Rev. A 92, 063613 (2015).

    Article  ADS  Google Scholar 

  27. M.A. Norcia, J.R.K. Cline, J.K. Thompson, Phys. Rev. A 96, 042118 (2017).

    Article  ADS  Google Scholar 

  28. J. Su, Q. Wang, Q. Wang, P. Jetzer, Class. Quantum Grav. 35, 085010 (2018).

    Article  ADS  Google Scholar 

  29. N.J. Cornish, L.J. Rubbo, Phys. Rev. D 67, 022001 (2003).

    Article  ADS  Google Scholar 

  30. R. Schilling, Class. Quantum Grav. 14, 1513 (1997).

    Article  ADS  Google Scholar 

  31. M. Tinto, Phys. Rev. D 53, 5354 (1996).

    Article  ADS  Google Scholar 

  32. T. Piran, E. Reiter, W.G. Unruh, R.F.C. Vessot, Phys. Rev. D 34, 984 (1986).

    Article  ADS  Google Scholar 

  33. S.L. Larson, W.A. Hiscock, R.W. Hellings, Phys. Rev. D 62, 062001 (2000).

    Article  ADS  Google Scholar 

  34. B. Tang, B. Zhang, L. Zhou, J. Wang, M.S. Zhan, Eur. Phys. J. D 69, 233 (2015).

    Article  ADS  Google Scholar 

  35. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015).

    Article  ADS  Google Scholar 

  36. H. Guan-Chyun, J.C. Hung, , IEEE Trans. Ind. Electron. 43, 609 (1996).

    Article  Google Scholar 

  37. M.M. Boyd, T. Zelevinsky, A.D. Ludlow, S.M. Foreman, S. Blatt, T. Ido, J. Ye, Science 314, 1430 (2006).

    Article  ADS  Google Scholar 

  38. K. Danzmann, T. Prince, P. Binetruy, P. Bender, S. Buchman, J. Centrella, M. Cerdonio, N. Cornish, A. Cruise, C. Cutler, et al., LISA: Unveiling a hidden universe, Assessment Study Report ESA/SRE, 2011, Vol. 3, p. 2.

    Google Scholar 

  39. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti, A. Bohe, C. Caprini, M. Colpi, N.J. Cornish, K. Danzmann, et al., Class. Quantum Grav. 29, 124016 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Zhang.

Additional information

Contribution to the Topical Issue “Quantum Technologies for Gravitational Physics” edited by Tanja Mehlstäubler, Yanbei Chen, Guglielmo M. Tino, Hsien-Chi Yeh

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Zhang, B. A protocol of potential advantage in the low frequency range to gravitational wave detection with space based optical atomic clocks. Eur. Phys. J. D 74, 94 (2020). https://doi.org/10.1140/epjd/e2020-100611-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100611-y

Navigation