Skip to main content
Log in

Supersymmetric gauge potentials in multiphoton transition of atoms and squeezed-vacuum-state driven supersymmetric “isospin” evolution

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Energy spectrum of a multiphoton-transition Jaynes-Cummings model with supersymmetry breaking and some relevant topics such as multiphoton dark state (photon-atom dark-state polariton) and multiphoton coherent population trapping are considered in this paper. We show that for a moving atom, because of Doppler effect and the relativistic electromagnetic induction for the incident optical field, there appears supersymmetric gauge potentials induced by the multiphoton transition and then this can lead to some interesting physical effects such as supersymmetric “spin” Hall effect and supersymmetric Aharonov-Bohm effect of atoms. Both supersymmetric vectorial gauge potential and scalar gauge potential can drive the population transition in the supersymmetric “isospin” doublet states in this Jaynes-Cummings model. As an illustrative example, we address the quantum collapse and revival in atomic population inversion driven by squeezed vacuum states and displaced squeezed vacuum states in such a multiphoton-transition Jaynes-Cummings model. It can be found that different from a coherent state that drives the Jaynes-Cummings model, where quantum collapse-revival effect in atomic level population inversion can be exhibited, a squeezed vacuum state, which excites the Jaynes-Cummings model, cannot give rise to the quantum collapse and revival because there is no Fock-state probability peak in the distribution function in the squeezed vacuum state. If, however, the Jaynes-Cummings model with multiphoton transition is driven by a displaced squeezed vacuum state, it can exhibit the effect of collapse and revival in the energy-level population inversion. In addition, we shall consider the interaction among atom paths (spatial wavefunctions), atomic internal levels and the photon field. Such a coupling leads to an atomic path-level-photon entangled state, and the traditional atomic-level quantum Rabi oscillation and quantum collapse-revival effect that occurred in time domain would be exhibited in the atom spatial wavefunctions (or in atomic paths).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  2. C.V. Sukumar, B. Buck, Phys. Lett. A 83, 211 (1981)

    Article  ADS  Google Scholar 

  3. S. Singh, Phys. Rev. A 25, 3206 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. F.L. Kien, M. Kozierowski, T. Quang, Phys. Rev. A 38, 263 (1988)

    Article  ADS  Google Scholar 

  5. W. Vogel, D.-G. Welsch, Phys. Rev. A 40, 7113 (1989)

    Article  ADS  Google Scholar 

  6. L.H. Ryder, in Quantum Field Theory. 2nd ed. (Cambridge University Press, Cambridge, U.K., 1996), Chap. 11

  7. P. Nath, Supersymmetry, Supergravity and Unification, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, U.K., 2017)

  8. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  9. D.J. Wineland, Rev. Mod. Phys. 85, 1103 (2013)

    Article  ADS  Google Scholar 

  10. Z.M. Zhang, in Quantum Optics(Science Press of China, Beijing, 2015), Chap. 9

  11. Z.M. Zhang, in Quantum Optics (Science Press of China, Beijing, 2015), Appendix D.

  12. H.X. Lu, X.Q. Wang, H.J. Liu, Y.D. Zhang, Mod. Phys. Lett. B 15, 479 (2001)

    Article  ADS  Google Scholar 

  13. H.X. Lu, X.Q. Wang, Chin. Phys. 9, 568 (2000)

    Article  Google Scholar 

  14. V.A. Andreev, P.B. Lerner, Phys. Lett. A 134, 507 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Geron, Bull. Soc. R. Sci. Liège 68, 403 (1999)

    MathSciNet  Google Scholar 

  16. H.Y. Fan, H.C. Yuan, H. Wu , in Invariant Eigenvalue Operator Formulation in Quantum Mechanics (Shanghai Jiaotong University Press, Shanghai, 2011), Chap. 8

  17. H.Y. Fan, L.Y. Hu, in Optical Transformation: From Quantum to Classical, Series of New Progress in Quantum Physics (Shanghai Jiaotong University Press, Shanghai, 2010), Chap. 12

  18. R.R. Puri, in Mathematical Methods of Quantum Optics (Springer, Berlin, 2001), Chap. 6

  19. R.R. Puri, in Mathematical Methods of Quantum Optics (Springer, Berlin, 2001),Chap. 7

  20. R.R. Puri, in Mathematical Methods of Quantum Optics (Springer, Berlin, 2001), Chap. 10

  21. A.B. Klimov, S.M. Chumakov, in A Group-Theoretical Approach to Quantum Optics: Models of Atom-Field Interactions (Wiley-VCH Verlag GmbH & Co. KGaA, Heidelberg, Germany, 2009), pp. 83–112, Chap. 5

  22. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. N.B. Narozhny, J.J. Sanchez-Mondragon, J.H. Eberly, Phys. Rev. A 23, 236 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.A. Karatsuba, E.A. Karatsuba, J. Phys. A: Math. Theor. 42, 195304 (2009)

    Article  ADS  Google Scholar 

  25. Q. Xie, H. Zhong, M.T. Batchelor, C. Lee, J. Phys. A: Math. Theor. 50, 113001 (2017)

    Article  ADS  Google Scholar 

  26. X.-Q. Yan, B.-Y. Zhang, Ann. Phys. 349, 350 (2014)

    Article  ADS  Google Scholar 

  27. M.O. Scully, M.S. Zubairy, in Quantum Optics (Cambridge Univ. Press, Cambridge, 1997), Chap. 6

  28. S.Y. Chong, J.Q. Shen, Phys. Scr., https://doi.org/10.1088/1402-4896/ab5c6e

  29. G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987)

    Article  ADS  Google Scholar 

  30. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 76, 1800 (1996)

    Article  ADS  Google Scholar 

  31. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  Google Scholar 

  32. B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, J. Schmiedmayer, Science 360, 307 (2018)

    Article  MathSciNet  Google Scholar 

  33. J.-S. Xu, C.-F. Li, M. Gong, X.-B. Zou, C.-H. Shi, G. Chen, G.-C. Guo, Phys. Rev. Lett. 104, 100502 (2010)

    Article  ADS  Google Scholar 

  34. J. Trapani, M. Bina, S. Maniscalco, M.G.A. Paris, Phys. Rev. A 91, 022113 (2015)

    Article  ADS  Google Scholar 

  35. T. Meunier, S. Gleyzes, P. Maioli, A. Auffeves, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 94, 010401 (2005)

    Article  ADS  Google Scholar 

  36. V.S. Shchesnovich, V.V. Konotop, Phys. Rev. A 75, 063628 (2007)

    Article  ADS  Google Scholar 

  37. P. Jakubczyk, K. Majchrowski, Nanoscale Res. Lett. 12, 236 (2017)

    Article  ADS  Google Scholar 

  38. G. Kirchmair, B. Vlastakis, Z. Leghtas, S.E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature 495, 205 (2013)

    Article  ADS  Google Scholar 

  39. S. Puri, S. Boutin, A. Blais, NPJ Quantum Inform. 3, 18 (2017)

    Article  ADS  Google Scholar 

  40. A. Imamoğlu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  41. H. Wang, D. Goorskey, M. Xiao, Phys. Rev. Lett. 87, 073601 (2001)

    Article  ADS  Google Scholar 

  42. V.S. Malinovsky, I.R. Sola, Phys. Rev. Lett. 96, 050502 (2006)

    Article  ADS  Google Scholar 

  43. V.A.S.V. Bittencourt, A.E. Bernardini, Ann. Phys. (Elsevier) 364, 182 (2016)

    Article  ADS  Google Scholar 

  44. M.G. Raizen, J.M. Gilligan, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Mod. Opt. 39, 233 (1992)

    Article  ADS  Google Scholar 

  45. D.N. Matsukevich, T. Chanelière, S.D. Jenkins, S.-Y. Lan, T.A.B. Kennedy, A. Kuzmich, Phys. Rev. Lett. 96, 033601 (2006)

    Article  ADS  Google Scholar 

  46. M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  47. M.O. Scully, M.S. Zubairy, in Quantum Optics (Cambridge Univ. Press, Cambridge, 1997), Chap. 7

  48. A.D. Greentree, T.B. Smith, S.R. de Echaniz, A.V. Durrant, J.P. Marangos, D.M. Segal, J.A. Vaccaro, Phys. Rev. A 65, 053802 (2002)

    Article  ADS  Google Scholar 

  49. D.F. James, J. Jerke, Can. J. Phys. 85, 625 (2007)

    Article  ADS  Google Scholar 

  50. C.C. Gerry, P.L. Knight, in Introductory Quantum Optics (Cambridge University Press, Cambridge, U.K, 2005), Chap. 10

  51. J.D. Jackson, in Classical Electrodynamics 3rd ed. (John Wiley & Sons, New York, 2001), p. 558

  52. T. Juffmann, H. Ulbricht, M. Arndt, Rep. Prog. Phys. 76, 086402 (2013)

    Article  ADS  Google Scholar 

  53. M.O. Scully, M.S. Zubairy, in Quantum Optics (Cambridge Univ. Press, Cambridge, 1997), Chap. 2

  54. Z.M. Zhang, in Quantum Optics (Science Press of China, Beijing, 2015), Chap. 4

  55. K.Y. Bliokh, D. Smirnova, F. Nori, Science 348, 1448 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  56. S.L. Zhu, Z.D. Wang, Phys. Rev. A 67, 022319 (2002)

    Article  ADS  Google Scholar 

  57. D. Zhang, J. Huaihua Teach. Coll. (in Chinese) 16, 46 (1997)

    Google Scholar 

  58. D.Y. Zhang, in Quantum Logic Gates and Quantum Decoherence (Science Press of China, Beijing, 2013), Chap. 3

  59. C.P. Sun, Y.D. Wang, Y. Li, P. Zhang, Fundamental concepts and methods in microcavity quantum electrodynamics, in Recent Progress in Quantum Mechanics, edited by J. Zeng, G. Long, S. Pei (Tsinghua University, Beijing, 2003), Vol. 3, Chap. 4, pp. 139–187

  60. W.-S. Dai, M. Xie, Phys. Lett. A 311, 340 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  61. C.-P. Sun, L.-H. Yu, Phys. Rev. A 51, 1845 (1995)

    Article  ADS  Google Scholar 

  62. C.P. Sun, Y.B. Gao, H.F. Dong, S.R. Zhao, Phys. Rev. E 57, 3900 (1998)

    Article  ADS  Google Scholar 

  63. F.L. Li, in Advanced Laser Physics (Press of University of Sci-Tech of China, Anhui Hefei, 1992), Chap. 3

  64. M. Hofheinz, E.M. Weig, M. Ansmann, R.C. Bialczak, E. Lucero, M. Neeley, A.D. O’Connell, H. Wang, J.M. Martinis, A.N. Cleland, Nature 454, 310 (2008)

    Article  ADS  Google Scholar 

  65. X.C. Gao, J. Gao, J. Fu, Acta Phys. Sin. 45, 912 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Qi Shen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J.Q., Chong, S.Y. Supersymmetric gauge potentials in multiphoton transition of atoms and squeezed-vacuum-state driven supersymmetric “isospin” evolution. Eur. Phys. J. D 74, 56 (2020). https://doi.org/10.1140/epjd/e2020-100429-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100429-1

Keywords

Navigation