Skip to main content
Log in

A theoretical investigation of the presence of the azimuthal backward waves (ABWs) and their amplification in a magnetized plasma waveguide with two annular rotating energy sources

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the azimuthal backward waves (ABWs) in a magnetized plasma waveguide are studied. The waveguide is made of the loss-free metallic cylindrical wall and a dielectric annular layer and a magnetized plasma column in it. There are two annular rotating electron beams as the energy sources in the waveguide. The inner annular rotating electron beam (IAREB) is in the plasma region and the outer annular rotating electron beam (OAREB) is on the dielectric layer. The generation of ABWs as a possible consequence of the presence of two annular electron beams is proved by using Poynting’s theorem in the mentioned configuration. Also, it is observed that the width of allowed and forbidden frequencies of ABWs in the considered waveguide can be enhanced and shifted to the higher frequency side by changing the fundamental physical parameters. In addition, the effective factors on the frequency spectrum and growth rate of ABWs such as the geometric dimensions, the dielectric constant of the dielectric layer and electron plasma frequency of the annular electron beams are studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Andriyash, E. D’Humieres, V. Tikhonchuk, Ph Balcou, Phys. Rev. Lett. 109, 244802 (2012).

    Article  ADS  Google Scholar 

  2. S. Usenko, A. Przystawik, M. Alexander Jakob, L.L. Lazzarino, G. Brenner, S. Toleikis, Ch Haunhorst, D. Kip, T. Laarmann, Nat. Commun. 8, 15626 (2017).

    Article  ADS  Google Scholar 

  3. R. Kompfner, Rep. Prog. Phys. 15, 275 (1952).

    Article  ADS  Google Scholar 

  4. J.G. Wohlbier, J.H. Booske, I. Dobson, IEEE Trans. Plasma Sci. 30, 1063 (2002).

    Article  ADS  Google Scholar 

  5. R.K. Gupta, IETE J. Educ. 41, 3 (2000).

    Article  Google Scholar 

  6. S. Bhattacharjee, J. Booske, C.L. Kory, D.W. van der Weide, S. Limbach, S. Gallagher, J.D. Welter, M.R. Lopez, R.M. Gilgenbach, R. Lawrence Ives, M. Read, R. Divan, D. Charles Mancini, IEEE Trans. Plasma Sci. 32, 1002 (2004).

    Article  ADS  Google Scholar 

  7. S.M. Wiggins, D.A. Jaroszynski, B.W.J. McNeil, G.R.M. Robb, P. Aitken, A.D.R. Phelps, A.W. Cross, K. Ronald, N.S. Ginzburg, V.G. Shpak, M.I. Yalandin, S.A. Shunailov, M.R. Ulmaskulov, Phys. Rev. Lett. 84, 11 (1999).

    Google Scholar 

  8. W. Xie, J. Zi-Cheng Wang, J. Luo, D. Zhao, Phys. Plasmas 22, 042307 (2015).

    Article  ADS  Google Scholar 

  9. F. Dang, X. Zhang, H. Zhong, J. Zhang, J. Ju, Appl. Phys. 121, 083302 (2017).

    Article  Google Scholar 

  10. K. Schuenemann, A.E. Serebryannikov, S.V. Sosnytskiy, D.M. Vavriv, Phys. Plasmas 10, 2559 (2003).

    Article  ADS  Google Scholar 

  11. H.H. Song, D.B. McDermott, Y. Hirata, L.R. Barnett, C.W. Domier, H.L. Hsu, T.H. Chang, W.C. Tsai, K.R. Chu, N.C. Luhmann Jr, Phys. Plasmas 11, 2935 (2004).

    Article  ADS  Google Scholar 

  12. M.Y. Glyavin, A.G. Luchinin, G.Y. Golubiatnikov, Phys. Rev. Lett. 100, 015101 (2008).

    Article  ADS  Google Scholar 

  13. L. Zhang, Y. Wei, B. Wang, W. Shen, J. Xu, Y. Gong, G. Park, Phys. Plasmas 23, 033111 (2016).

    Article  ADS  Google Scholar 

  14. Z. Chen, et al., Phys. Plasmas. 20, 113103 (2013).

    Article  ADS  Google Scholar 

  15. H. Xi, et al., Sci. Rep. 8, 438 (2018).

    Article  Google Scholar 

  16. W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A.D.R. Phelps, A.W. Cross, Appl. Phys. Lett. 107, 133501 (2015).

    Article  ADS  Google Scholar 

  17. MdG Saber, R.H. Sagor, MdR Ami, Eur. Phys. J. D 69, 38 (2015).

    Article  ADS  Google Scholar 

  18. W. He, C.R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, A.W. Cross, Phys. Rev. Lett. 110, 165101 (2013).

    Article  ADS  Google Scholar 

  19. G.X. Shu, G. Liu, L. Chen, H. Bambarandage, Z.F. Qian, J. Phys. D Appl. Phys. 51, 055107 (2018).

    Article  ADS  Google Scholar 

  20. M. Mineo, C. Paoloni, Microwave Opt. Technol. Lett. 54, 837 (2012).

    Article  Google Scholar 

  21. A.V. Vashkovskii, E.H. Lock, Phys. Usp. 47, 601 (2004).

    Article  ADS  Google Scholar 

  22. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  23. V.V. Shevchenko, J. Commun. Technol. Electron. 48, 1102 (2003).

    Google Scholar 

  24. V.V. Shevchenko, J. Commun. Technol. Electron. 50, 1260 (2005).

    Google Scholar 

  25. C. Paoloni, D. Gamzina, L. Himes, B. Popovic, R. Barchfeld, L.N. Yue, Y. Zheng, X.P. Tang, Y. Tang, P. Pan, H.Y. Li, R. Letizia, M. Mineo, J.J. Feng, N.C. Luhmann Jr, IEEE Trans. Plasma Sci. 44, 369 (2016).

    Article  ADS  Google Scholar 

  26. M. Mineo, C. Paoloni, IEEE Trans. Electron Devices 57, 6 (2010).

    Article  Google Scholar 

  27. A.A. Basharin, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Opt. Express 20, 12752 (2012).

    Article  ADS  Google Scholar 

  28. A.I. Girka, V.A. Girka, I.A. Girka, I.V. Pavlenko, Radiophys. Quantum Electron. 51, 2 (2008).

    Article  Google Scholar 

  29. V.A. Girka, V.I. Girka, V.I. Tkachenko, Tech. Phys. 41, 4 (1996).

    Google Scholar 

  30. I.O. Girka, I.V. Pavlenko, M. Thumm, Phys. Plasmas 25, 052109 (2018).

    Article  ADS  Google Scholar 

  31. I.O. Girka, M. Thumm, Phys. Plasmas 23, 122124 (2016).

    Article  ADS  Google Scholar 

  32. A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics (Nauka, Moscow, Russia, 1974).

  33. M.V. Kuzelev, A.A. Rukhadze, Methods of wave theory in Dispersive Media (World Scientific, Singapore, 2009).

  34. Z. Hajijamali-Arani, B. Jazi, Phys. Plasmas 24, 042101 (2017).

    Article  ADS  Google Scholar 

  35. Z. Hajijamali-Arani, B. Jazi, Eur. Phys. J. Plus 132, 474 (2017).

    Article  Google Scholar 

  36. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Heidelberg, 1984).

  37. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973).

  38. J. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999).

  39. L. Shenggang, J.K. Lee, Z. Dajun, Sci. China 39, 5 (1996).

    Google Scholar 

  40. R.C. Davidson, An Introduction to the Nonneutral Plasmas (Addison-Wesley, Reading, MA, 1990).

  41. M. Birau, M.A. Krasilnikov, M.V. Kuzelev, A.A. Rukhadze, Phys.-Usp. 40, 975 (1997).

    Article  ADS  Google Scholar 

  42. Z. Hajijamali-Arani, B. Jazi, Eur. Phys. J. Plus 132, 151 (2017).

    Article  Google Scholar 

  43. Z. Hajijamali-Arani, B. Jazi, Indian J. Phys. 92, 10 (2018).

    Article  Google Scholar 

  44. J.R. Reitz, F.J. Milford, R.W. Christy, Foundations of Electromagnetic Theory (Addison-Wesley, 1979).

  45. B. Shokri, H. Ghomi, H. Latifi, Phys. Plasmas 7, 2671 (2000).

    Article  ADS  Google Scholar 

  46. A.F. Aleksandrov, M.V. Kuzelev, A.N. Khalilov, Sov. Phys. JETP 66, 978 (1987).

    Google Scholar 

  47. J. Zheng, C.X. Yu, Z.J. Zheng, K.A. Tanaka, Phys. Plasmas 12, 093105 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Hajijamali-Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajijamali-Arani, Z., Jazi, B. A theoretical investigation of the presence of the azimuthal backward waves (ABWs) and their amplification in a magnetized plasma waveguide with two annular rotating energy sources. Eur. Phys. J. D 74, 40 (2020). https://doi.org/10.1140/epjd/e2020-100408-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100408-0

Keywords

Navigation