Skip to main content
Log in

A study of electron scattering from 1-1 C2H2F2 from 0.1 eV to 5 keV

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Various electron- impact cross sections of 1-1-C2H2F2 molecule are reported in the energy range from 0.1 to 5000 eV using the cc-pVTZ basis set. The molecular wavefunctions of the target are obtained from the multi-center expansion of the Gaussian-type orbitals within a single determinant Hartree Fock self consistent field scheme. The elastic cross sections in the low energy range (below ionization threshold) are reported in different scattering models like static-exchange, static-exchange-polarization and close-coupling using the R-matrix approach. The resonances detected in these scattering models are comprehensively analysed. The computed shape resonances are in an excellent agreement with the experimental and theoretical values. In addition to elastic rate coefficients, we have also reported differential, momentum transfer and electronic excitation cross sections. The present elastic cross sections are in good accord with the other ab-initio calculations. However, the total cross sections obtained lie systematically above the experimental results. The Single Center Expansion (SCE) involving the use of local potentials is invoked to obtain differential, elastic and momentum transfer cross sections at energies beyond ionization threshold. The ionization cross sections are obtained using the Binary-Encounter-Bethe model. The total cross sections are obtained by incoherently summing the elastic and inelastic cross sections. The SCE based results and total cross sections are in good agreement with the experimental and theoretical results. The cross sections like elastic, momentum transfer and total obtained from two different approaches are found to match smoothly near ionization threshold thus helping in estimating the cross sections over a wide energy range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Houghton et al. (eds), The Science of Climate Change, IPCC Climate Change (1995)

  2. ECETOC JACC Report No. 49, European Centre for Ecotoxicology and Toxicology of Chemicals, Belgium, 1995

  3. Y.W. Park, N. Inagaki, Polymer 44, 1569 (2003)

    Article  Google Scholar 

  4. Y. Ohtsu, N. Yamagami, H. Fujita, Jpn. J. App. Phys. 46, L679 (2007)

    Article  ADS  Google Scholar 

  5. Y. Ohtsu, Y. Masuda, S. Yazaki, T. Misawa, H. Fujita, Surf. Coat. Tech. 202, 5367 (2008)

    Article  Google Scholar 

  6. A.L. Moore, Fundamentals of Fluoroelastomers Handbook The definitive user’s guide and databook (2005)

  7. K.C. Rao, K.G. Bhushan, S.C. Gadkari, M. Vinodkumar, K. Korot, J. Electron Spectrosc. Relat. Phenom. 222, 133 (2018)

    Article  Google Scholar 

  8. M.D. Gurung, W.M. Ariyasinghe, Nucl. Instrum. Methods Phys. Res. B 395, 24 (2017)

    Article  ADS  Google Scholar 

  9. C. Makochekanwa, H. Kato, M. Hoshino, M.H.F. Bettega, M.A.P. Lima, O. Sueoka, H. Tanaka, J. Chem. Phys. 126, 164309 (2007)

    Article  ADS  Google Scholar 

  10. P.G. Burke, R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes (Springer-Verlag, Berlin, 2011)

  11. J. Tennyson, Phys. Rep. 491, 29 (2010)

    Article  ADS  Google Scholar 

  12. D. Gorfinkiel, J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 37, L343 (2004)

    Article  Google Scholar 

  13. D. Gorfinkiel, J. Tennyson, J Phys. B: At. Mol. Opt. Phys. 38, 1607 (2005)

    Article  ADS  Google Scholar 

  14. W.M. Huo, F.A. Gianturco, Computational Methods for Electron Molecule Collisions (Plenum, New York, 1994)

  15. F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)

    Article  ADS  Google Scholar 

  16. F.A. Gianturco, R.R. Lucchese, N. Sanna, A. Talamo, A generalized single center approach for treating electron scattering from polyatomic molecules, in Electron Collisions with Molecules, Clusters and Surfaces, edited by H. Ehrhardt, L.A. MorganH. Ehrhardt, L.A Morgan (Plenum, New York, 1994)

  17. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Plasmas 26, 063506 (2019)

    Article  ADS  Google Scholar 

  18. A. Bharadvaja, S. Kaur, K.L. Baluja, Eur. Phys. J. D 73, 251 (2019)

    Article  ADS  Google Scholar 

  19. A. Bharadvaja, S. Kaur, K.L. Baluja, Eur. Phys. J. D 73, 199 (2019)

    Article  ADS  Google Scholar 

  20. A. Bharadvaja, S. Kaur, K.L. Baluja, Pramana J. Phys. 94, 73 (2020)

    Article  ADS  Google Scholar 

  21. https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in

  22. J. Brenda, Z. Masin, J.D. Gorfinkiel, A.J. Harvey, J. Tennyson, Comput. Phys. Commun. 249, 107092 (2019)

    Google Scholar 

  23. S. Kaur, A. Bharadvaja, K.L. Baluja, Phys. Rev. A 83, 062707 (2011)

    Article  ADS  Google Scholar 

  24. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Rev. A 91, 032701 (2015)

    Article  ADS  Google Scholar 

  25. A. Bharadvaja, S. Kaur, K.L. Baluja, Pramana 89, 30 (2017)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  27. S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967)

    Article  ADS  Google Scholar 

  28. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 128, 139 (2000)

    Article  ADS  Google Scholar 

  29. A.P.P. Natalense, R.R. Lucchese, J. Chem. Phys. 111, 5344 (1999)

    Article  ADS  Google Scholar 

  30. F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys. 100, 6464 (1994)

    Article  ADS  Google Scholar 

  31. F. Carelli, F.A. Gianturco, J. Franz, M. Satta, Eur. Phys. J. D 69, 143 (2015)

    Article  ADS  Google Scholar 

  32. J. Franz, F.A. Gianturco, J. Chem. Phys. 139, 204309 (2013)

    Article  ADS  Google Scholar 

  33. J. Franz, I. Baccarelli, S. Caprasecca, F.A. Gianturco, Phys. Rev. A 80, 012709 (2009)

    Article  ADS  Google Scholar 

  34. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    Article  ADS  Google Scholar 

  35. Y.K. Kim, W. Hwang, N.M. Weinberger, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997)

    Article  ADS  Google Scholar 

  36. R.D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 21 (August 2020), http://cccbdb.nist.gov

  37. M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., GAUSSIAN 03 (Gaussian Inc, Wallingford, CT, 2004)

  38. M. Bassi, A. Bharadvaja, K.L. Baluja, Eur. Phys. J. D 73, 187 (2019)

    Article  ADS  Google Scholar 

  39. N. Sanna, I. Baccarelli, G. Morelli, Comput. Phys. Commun. 180, 2544 (2009)

    Article  ADS  Google Scholar 

  40. T. Meltzer, J. Tennyson, Z. Masin, M.C. Zammit, L.H. Scarlett, D.V. Fursa, I. Bray, J. Phys. B: At. Mol. Opt. Phys. 53, 145204 (2020)

    Article  ADS  Google Scholar 

  41. R. Zhang, A. Faure, J. Tennyson, Phys. Scr. 80, 015301 (2009)

    Article  ADS  Google Scholar 

  42. A. Hamada, O. Sueoka, J. Phys. B: At. Mol. Opt. Phys. 27, 5055 (1994)

    Article  ADS  Google Scholar 

  43. G.H. Wannier, Phys. Rev. 90, 817 (1953)

    Article  ADS  Google Scholar 

  44. R. Currik, F.A. Gianturco, N. Sanna, J. Phys. B. 33, 615 (2000)

    Article  ADS  Google Scholar 

  45. F.A. Gianturco, V. Di, A.K. Jain Martino, Il Nuovo Cimento 14, 411 (1992)

    Article  Google Scholar 

  46. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Rev. A 87, 0610035 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Bharadvaja.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassi, M., Bharadvaja, A. & Baluja, K.L. A study of electron scattering from 1-1 C2H2F2 from 0.1 eV to 5 keV. Eur. Phys. J. D 74, 232 (2020). https://doi.org/10.1140/epjd/e2020-10035-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10035-6

Keywords

Navigation