Skip to main content
Log in

Double ionization of helium with a convoluted quasi Sturmian approach

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The double ionization of Helium by fast electron impact is investigated through an ab initio approach based on an expansion on convoluted quasi Sturmian functions. The latter are dressed with an appropriately built phase factor that allows to represent adequately the delicate Coulomb phase associated with the electron-electron interaction. In so doing, these dressed basis functions possess the correct asymptotic behavior in the double continuum channel. They are used to solve, in the whole space, the driven Schrödinger equation corresponding to a first order treatment of the scattering process. Because of the asymptotic built in property of the basis, the ionization amplitudes are extracted directly from the Coulomb three-body scattering wave function, without the need to evaluate a six-dimensional matrix element. The calculated (e,3e) fully differential cross sections for two electrons escaping at 10 + 10 eV or 4 + 4 eV are in good shape agreement with those obtained by two other numerical approaches. However, for certain geometrical configurations a magnitude enhancement is observed for the lower energy case, and is ascribed to the different large distance descriptions of the long range Coulomb correlation in the scattering solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Papp, C.-Y. Hu, Z.T. Hlousek, B. Kónya, S.L. Yakovlev, Phys. Rev. A 63, 062721 (2001)

    Article  ADS  Google Scholar 

  2. C.W. McCurdy, M. Baertschy, T.N. Rescigno, J. Phys. B 37, R137 (2004)

    Article  ADS  Google Scholar 

  3. I. Bray, D.I. Fursa, A.S. Kadyrov, A.T. Stelbovics, A. Kheifets, A.M. Mukhamedzhanov, Phys. Rep. 520, 135 (2012)

    Article  ADS  Google Scholar 

  4. G. Gasaneo, L.U. Ancarani, D.M. Mitnik, J.M. Randazzo, A.L. Frapiccini, F.D. Colavecchia, Adv. Quantum Chem. 67, 153 (2013)

    Article  Google Scholar 

  5. A.S. Kadyrov, A.M. Mukhamedzhanov, A.T. Stelbovics, I. Bray, Phys. Rev. A 70, 062703 (2004)

    Article  ADS  Google Scholar 

  6. J. Colgan, M.S. Pindzola, Eur. Phys. J. D 66, 284 (2012)

    Article  ADS  Google Scholar 

  7. J.S. Briggs, Phys. Rev. A 41, 539 (1990)

    Article  ADS  Google Scholar 

  8. S.P. Merkuriev, L.D. Faddeev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic, Dordrecht, 1993)

  9. M.R.H. Rudge, Rev. Mod. Phys. 40, 564 (1968)

    Article  ADS  Google Scholar 

  10. Yu. F. Smirnov, A.V. Pavlitchenkov, V.G. Levin, V.G. Neudatchin, J. Phys. B 11, 3587 (1978)

    Article  ADS  Google Scholar 

  11. J.H. Macek, S. Jones, Radiat. Phys. Chem. 74, 7 (2005)

    Article  ADS  Google Scholar 

  12. L.U. Ancarani, T. Montagnese, C. Dal Cappello, Phys. Rev. A 70, 012711 (2004)

    Article  ADS  Google Scholar 

  13. C.R. Garibotti, J.E. Miraglia, Phys. Rev. A 21, 572 (1980)

    Article  ADS  Google Scholar 

  14. M. Brauner, J.S. Briggs, H. Klar, J. Phys. B 22, 2265 (1989)

    Article  ADS  Google Scholar 

  15. A. Lahmam-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi, J. Berakdar, Phys. Rev. A 59, 3548 (1999)

    Article  ADS  Google Scholar 

  16. A. Kheifets, I. Bray, A. Lahmam-Bennani, A. Duguet, I. Taouil, J. Phys. B 32, 5047 (1999)

    Article  ADS  Google Scholar 

  17. S. Jones, D.H. Madison, Phys. Rev. Lett. 91, 073201 (2003)

    Article  ADS  Google Scholar 

  18. A.S. Zaytsev, L.U. Ancarani, S.A. Zaytsev, Eur. Phys. J. D 71, 177 (2017)

    Article  ADS  Google Scholar 

  19. M.J. Ambrosio, L.U. Ancarani, Interdisciplianry Research on Particle Collisions and Quantitative Spectroscopy (World Scientific Publishing, Singapore, in press)

  20. S.A. Zaytsev, V.A. Knyr, Yu.V Popov, A. Lahmam-Bennani, Phys. Rev. A 75, 022718 (2007)

    Article  ADS  Google Scholar 

  21. M.S. Mengoue, M.G. Kwato Njock, B. Piraux, Yu.V Popov, S.A. Zaytsev, Phys. Rev. A 83, 052708 (2011)

    Article  ADS  Google Scholar 

  22. M. Silenou Mengoue, H.M. Tetchou Nganso, Phys. Rev. A 94, 062705 (2016)

    Article  ADS  Google Scholar 

  23. I. Bray, D.V. Fursa, A. Kheifets, A.T. Stelbovics, J. Phys. B 35, R117 (2002)

    Article  ADS  Google Scholar 

  24. M.J. Ambrosio, F.D. Colavecchia, G. Gasaneo, D.M. Mitnik, L.U. Ancarani, J. Phys. B 48, 055204 (2015)

    Article  ADS  Google Scholar 

  25. M.J. Ambrosio, F.D. Colavecchia, D.M. Mitnik, G. Gasaneo, Phys. Rev. A 91, 012704 (2015)

    Article  ADS  Google Scholar 

  26. A.S. Zaytsev, L.U. Ancarani, S.A. Zaytsev, Eur. Phys. J. Plus 131, 48 (2016)

    Article  Google Scholar 

  27. M. Baertschy, T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 64, 022709 (2001)

    Article  ADS  Google Scholar 

  28. H. Bräuning, R. Dörner, C.L. Cocke, M.H. Prior, B. Krässig, A.S. Kheifets, I. Bray, A. Bräuning-Demian, K. Carnes, S. Dreuil, V. Mergel, J. Phys. B 31, 5149 (1998)

    Article  ADS  Google Scholar 

  29. A.S. Kheifets, I. Bray, Phys. Rev. A 69, 050701(R) (2004)

    Article  ADS  Google Scholar 

  30. J.M. Randazzo, D.M. Mitnik, G. Gasaneo, L.U. Ancarani, F.D. Colavecchia, Eur. Phys. J. D 69, 189 (2015)

    Article  ADS  Google Scholar 

  31. C.W. McCurdy, D.A. Horner, T.N. Rescigno, F. Martín, Phys. Rev. A 69, 032707 (2004)

    Article  ADS  Google Scholar 

  32. J. Colgan, M.S. Pindzola, F. Robicheaux, J. Phys. B 34, L457 (2001)

    Article  ADS  Google Scholar 

  33. R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New-York, 1966).

  34. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

  35. A.D. Alhaidari, E.J. Heller, H.A. Yamani, M.S. Abdelmonem, eds., The J-Matrix Method: Developments and Applications (Springer Science, Business Media, 2008)

  36. G. Gasaneo, D.M. Mitnik, J.M. Randazzo, L.U. Ancarani, F.D. Colavecchia, Phys. Rev. A 87, 042707 (2013)

    Article  ADS  Google Scholar 

  37. M.L. Goldberger, K.M. Watson, Collision Theory (John Wiley & Sons Inc, New York, London, Sydney, 1964)

  38. L.U. Ancarani, C.D. Cappello, G. Gasaneo, J. Phys.: Conf. Ser. 212, 012025 (2010)

    Google Scholar 

  39. Shared Facility Center “Data Center of FEB RAS” (Khabarovsk, Russia), http://lits.ccfebras.ru

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr S. Zaytsev.

Additional information

Contribution to the Topical Issue “Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)”, edited by Károly Tökési, Béla Paripás, Gábor Pszota, and Andrey V. Solov’yov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytsev, A.S., Zaytseva, D.S., Ancarani, L.U. et al. Double ionization of helium with a convoluted quasi Sturmian approach. Eur. Phys. J. D 73, 111 (2019). https://doi.org/10.1140/epjd/e2019-90618-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90618-x

Keywords

Navigation