Skip to main content
Log in

Positivity violations of the density operator in the Caldeira-Leggett master equation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

An Erratum to this article was published on 25 June 2019

This article has been updated

Abstract

The Caldeira-Leggett master equation as an example of Markovian master equation without Lindblad form is investigated for mathematical consistency. We explore situations both analytically and numerically where the positivity violations of the density operator occur. We reinforce some known knowledge about this problem but also find new surprising cases. Our analytical results are based on the full solution of the Caldeira-Leggett master equation obtained via the method of characteristics. The preservation of positivity is mainly investigated with the help of the density operator’s purity and we give also some numerical results about the violation of the Robertson-Schrödinger uncertainty relation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 25 June 2019

    This erratum corrects three mistakes. The first is a typo, the second one is an unclear statement about the states used in the numerical simulations, and the third is a misused reference with respect to an equation.

  • 25 June 2019

    This erratum corrects three mistakes. The first is a typo, the second one is an unclear statement about the states used in the numerical simulations, and the third is a misused reference with respect to an equation.

References

  1. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932)

  2. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  3. G. Lindblad, Comm. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.O. Caldeira, A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983)

    Article  ADS  Google Scholar 

  5. A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Spohn, Rev. Mod. Phys. 52, 569 (1980)

    Article  ADS  Google Scholar 

  7. P. Talkner, Ann. Phys. 167, 390 (1986)

    Article  ADS  Google Scholar 

  8. D. Kohen, C.C. Marston, D.J. Tannor, J. Chem. Phys. 107, 5236 (1997)

    Article  ADS  Google Scholar 

  9. K. Kraus, Ann. Phys. 64, 311 (1971)

    Article  ADS  Google Scholar 

  10. H.-P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002)

  11. G. Lindblad, Rep. Math. Phys. 10, 393 (1976)

    Article  ADS  Google Scholar 

  12. L. Diósi, Physica A 199, 517 (1993)

    Article  ADS  Google Scholar 

  13. H. Dekker, Phys. Rep. 80, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Sandulescu, H. Scutaru, Ann. Phys. (N.Y.) 173, 277 (1987)

    Article  ADS  Google Scholar 

  15. L. Diósi, Europhys. Lett. 22, 1 (1993)

    Article  ADS  Google Scholar 

  16. J.G. Peixoto de Faria, M.C. Nemes, J. Phys. A: Math. Gen. 31, 7095 (1998)

    Article  ADS  Google Scholar 

  17. F. Petruccione, B. Vacchini, Phys. Rev. E 71, 046134 (2005)

    Article  ADS  Google Scholar 

  18. A. Barchielli, B. Vacchini, New J. Phys. 17, 083004 (2015)

    Article  ADS  Google Scholar 

  19. S. Gnutzmann, F. Haake, Z. Phys. B 101, 263 (1996)

    Article  ADS  Google Scholar 

  20. S. Roy, A. Venugopalan, arXiv:quant-ph/9910004

  21. C.H. Fleming, A. Roura, B.L. Hu, Ann. Phys. 326, 1207 (2011)

    Article  ADS  Google Scholar 

  22. H.P. Robertson, Phys. Rev. 46, 794 (1934)

    Article  ADS  Google Scholar 

  23. H. Dekker, M.C. Valsakumar, Phys. Lett. A 104, 67 (1984)

    Article  ADS  Google Scholar 

  24. R.S. Ingarden, A. Kossakowski, Ann. Phys. 89, 451 (1975)

    Article  ADS  Google Scholar 

  25. K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983)

  26. D.A. Trifonov, Eur. Phys. J. B 29, 349 (2002)

    Article  ADS  Google Scholar 

  27. R. Courant, D. Hilbert, Methods of Mathematical Physics (Interscience Publishers, New York, 1962)

  28. J.Z. Bernád, G. Homa, M.A. Csirik, Eur. Phys. J. D 72, 212 (2018)

    Article  ADS  Google Scholar 

  29. K. Robert, G. Hermann, Phys. Rev. E 55, 153 (1997)

    Article  Google Scholar 

  30. H. Fritz, R. Reinhard, Phys. Rev. A 32, 2462 (1985)

    Article  Google Scholar 

  31. B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1995)

  33. V. Giovannetti, D. Vitali, Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Zsolt Bernád.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homa, G., Bernád, J.Z. & Lisztes, L. Positivity violations of the density operator in the Caldeira-Leggett master equation. Eur. Phys. J. D 73, 53 (2019). https://doi.org/10.1140/epjd/e2019-90604-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90604-4

Keywords

Navigation