Skip to main content
Log in

High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the first high-capacity quantum private comparison (QPC) protocol is proposed to solve the comparison problem of equality of two parties’ secret inputs without revealing them out. This scheme is assisted with the semi-honest third party to fulfill the task. And the genuine two-photon hyperentangled Bell states are utilized as the important information carriers. Different from the previous protocols, this hyperentangled Bell states are composed of only two photons but characterize six qubits in two longitudinal momentum and polarization degrees of freedom (DOFs). In addition, this protocol possesses a higher information capacity and saves massive quantum resources for that the two-photon system can carry 6 bits of information. Meanwhile, this scheme can be applied and useful for long-distance quantum communication to improve the feasibility of QPC protocol. Furthermore, 64 nonorthogonal single-photon states as decoy photons are utilized to detect the security of the quantum channel. This method not only increases the security of the quantum channel, but also decreases the decoherence effect of environment noise. Moreover, this QPC protocol is analyzed to be immune to various kinds of attack. Finally, this QPC protocol can obtain the good application to compare the secret inputs securely, efficiently and feasibly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Bangalore, Vol. 175

  2. A.-K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. C.-H. Bennett, G. Brassard, N.-D. Mermin, Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Zhang, J. Zhu, Q. Wang, Eur. Phys. J. D 72, 108 (2018)

    Article  ADS  Google Scholar 

  5. Y.-Y. Fei, X.-D. Meng, M. Gao, Z. Ma, H. Wang, Eur. Phys. J. D 72, 107 (2018)

    Article  ADS  Google Scholar 

  6. J. Zhu, C. Zhang, Q. Wang, Eur. Phys. J. D 71, 319 (2017)

    Article  ADS  Google Scholar 

  7. H. Jiang, M. Gao, B. Yan, W. Wang, Z. Ma, Eur. Phys. J. D 70, 78 (2016)

    Article  ADS  Google Scholar 

  8. F. Gao, S.-J. Qin, F.-Z. Guo, Q.-Y. Wen, IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  9. F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, Int. J. Mod. Phys. B 24, 4611 (2010)

    Article  ADS  Google Scholar 

  10. F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, Phys. Lett. A 355, 172 (2006)

    Article  ADS  Google Scholar 

  11. B. Liu, F. Gao, Q.-Y. Wen, IEEE J. Quantum Electron. 47, 1383 (2011)

    Article  ADS  Google Scholar 

  12. J. Wang, H. Wang, X. Qin, Z. Wei, Z. Zhang, Eur. Phys. J. D 70, 5 (2016)

    Article  ADS  Google Scholar 

  13. Y.-G. Tan, Q.-Y. Cai, H.-F. Yang, Y.-H. Hu, Eur. Phys. J. D 69, 258 (2015)

    Article  ADS  Google Scholar 

  14. J.-Z. Huang, Z.-Q. Yin, S. Wang, H.-W. Li, W. Chen, Z.-F. Han, Eur. Phys. J. D 66, 159 (2012)

    Article  ADS  Google Scholar 

  15. M. Hillery, V. Bužek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Karlsson, M. Koashi, N. Imoto, Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  17. C.-M. Bai, Z.-H. Li, M.-M. Si, Y.-M. Li, Eur. Phys. J. D 71, 255 (2017)

    Article  ADS  Google Scholar 

  18. H.-Y. Jia, Q.-Y. Wen, F. Gao, S.-J. Qin, F.-Z. Guo, Phys. Lett. A 376, 1035 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, Phys. Rev. A 72, 036302 (2005)

    Article  ADS  Google Scholar 

  20. F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, H.-Y. Zhou, Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  21. F.-G. Deng, H.-Y. Zhou, G.-L. Long, Phys. Rev. A 337, 329 (2005)

    Google Scholar 

  22. M. Ray, S. Chatterjee, I. Chakrabarty, Eur. Phys. J. D 70, 114 (2016)

    Article  ADS  Google Scholar 

  23. Z.-J. Zhang, J. Yang, Z.-X. Man, Y. Li, Eur. Phys. J. D 33, 133 (2005)

    Article  ADS  Google Scholar 

  24. G.-L. Long, X.-S. Liu, Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  25. F.-G. Deng, G.-L. Long, X.-S. Liu, Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  26. F.-G. Deng, G.-L. Long, Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  27. J.-Y. Hu, B. Yu, M.-Y. Jing, L.-T. Xiao, S.-T. Jia, G.-Q. Qin, G.-L. Long, Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  28. W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi, G.-C. Guo, Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  29. C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, G.-L. Long, Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  30. C. Wang, F.-G. Deng, G.-L. Long, Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  31. X.-H. Li, C.-Y. Li, F.-G. Deng, P. Zhou, Y.-J. Liang, H.-Y. Zhou, Chin. Phys. 16, 2149 (2007)

    Article  ADS  Google Scholar 

  32. G.-L. Long, F.-G. Deng, C. Wang, X.-H. Li, K. Wen, W.-Y. Wang, Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  33. B.-C. Ren, H.-R. Wei, M. Hua, T. Li, F.-G. Deng, Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  34. T.-J. Wang, T. Li, F.-F. Du, F.-G. Deng, Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  35. F. Gao, Q.-Y. Wen, F.-C. Zhu, Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  36. F. Gao, S.-J. Qin, F.-Z. Guo, Q.-Y. Wen, Chin. Phys. Lett. 28, 020303 (2011)

    Article  ADS  Google Scholar 

  37. F. Gao, S.-J. Qin, Q.-Y. Wen, F.-C. Zhu, Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  38. B. Liu, F. Gao, W. Huang, Q.Y. Wen, Quantum Inf. Process. 12, 1797 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. W. Huang, Q.-Y. Wen, B. Liu, F. Gao, Quantum Inf. Process. 13, 649 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. Y.-H. Chou, G.-J. Zeng, Z.-H. Chang, S.-Y. Kuo, Sci. Rep. 8, 4633 (2018)

    Article  ADS  Google Scholar 

  41. F. Gao, B. Liu, W. Huang, Q.-Y. Wen, IEEE J. Sel. Top. Quant. 21, 98 (2015)

    Article  Google Scholar 

  42. B. Liu, F. Gao, W. Huang, Q.Y. Wen, Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  43. C.-Y. Wei, T.-Y. Wang, F. Gao, Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  44. C.-Y. Wei, F. Gao, Q.-Y. Wen, T.-Y. Wang, Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  45. C.-Y. Wei, X.-Q. Cai, B. Liu, T.-Y. Wang, F. Gao, IEEE Trans. Comput. 67, 2 (2018)

    Article  MathSciNet  Google Scholar 

  46. A.C. Yao, Protocols for secure computations, in Proceedings of the 23rd Annual Symposium on Computer Science, Chicago, 1982, p. 160

  47. Y.-G. Yang, Q.-Y. Wen, J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  Google Scholar 

  48. H.-Y. Tseng, J. Lin, T. Hwang, Quantum Inf. Process. 11, 373 (2012)

    Article  MathSciNet  Google Scholar 

  49. W. Liu, Y.-B. Wang, Z.-T. Jiang, Opt. Commun. 284, 3160 (2011)

    Article  ADS  Google Scholar 

  50. W. Huang, Q.-Y. Wen, B. Liu, F. Gao, Y. Sun, Sci. China Phys. Mech. Astron. 56, 1670 (2013)

    Article  ADS  Google Scholar 

  51. Z.-W. Sun, D.-Y. Long, Int. J. Theor. Phys. 52, 212 (2013)

    Article  MathSciNet  Google Scholar 

  52. J. Li, H.-F. Zhou, L. Jia, T.-T. Zhang, Int. J. Theor. Phys. 53, 2167 (2014)

    Article  Google Scholar 

  53. Y. Chang, W.-B. Zhang, S.-B. Zhang, H.-C. Wang, L.-L. Yan, G.-H. Han, Z.-W. Sheng, Y.-Y. Huang, W. Suo, J.-X. Xiong, Commun. Theor. Phys. 66, 621 (2016)

    Article  ADS  Google Scholar 

  54. T.-Y. Ye, Commun. Theor. Phys. 67, 147 (2017)

    Article  ADS  Google Scholar 

  55. O. Pfister, Nat. Photonics 9, 483 (2015)

    Article  ADS  Google Scholar 

  56. F.-G. Deng, B.-C. Ren, X.-H. Li, Sci. Bull. 62, 46 (2017)

    Article  Google Scholar 

  57. Y.-B. Sheng, F.-G. Deng, G.-L. Long, Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  58. B.-C. Ren, H.-R. Wei, M. Hua, T. Li, F.-G. Deng, Opt. Express 20, 24664 (2012)

    Article  ADS  Google Scholar 

  59. T.-J. Wang, Y. Lu, G.-L. Long, Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  60. X.-H. Li, S. Ghose, Phys. Rev. A 93, 022302 (2016)

    Article  ADS  Google Scholar 

  61. G.-Y. Wang, Q. Ai, B.-C. Ren, T. Li, F.-G. Deng, Opt. Express 24, 28444 (2016)

    Article  ADS  Google Scholar 

  62. Q. Liu, G.-Y. Wang, Q. Ai, M. Zhang, F.-G. Deng, Sci. Rep. 6, 22016 (2016)

    Article  ADS  Google Scholar 

  63. P. Wang, W. Fan, M. Chen, O. Pfister, N.-C. Menicucci, Engineering large-scale entanglement in the quantum optical frequency comb, in 2015 IEEE Conference on In Lasers and Electro-Optics (CLEO), San Jose, 2015, p. 1

  64. B.-C. Ren, H.-R. Wei, F.-G. Deng, Laser Phys. Lett. 10, 095202 (2013)

    Article  ADS  Google Scholar 

  65. B.-C. Ren, F.-G. Deng, Sci. Rep. 4, 4623 (2014)

    Article  Google Scholar 

  66. B.-C. Ren, G.-Y. Wang, F.-G. Deng, Phys. Rev. A 91, 032328 (2015)

    Article  ADS  Google Scholar 

  67. T. Li, G.-L. Long, Phys. Rev. A 94, 022343 (2016)

    Article  ADS  Google Scholar 

  68. B.-C. Ren, F.-G. Deng, Opt. Express 25, 10863 (2017)

    Article  ADS  Google Scholar 

  69. H.-R. Wei, F.-G. Deng, G.-L. Long, Opt. Express 24, 18619 (2016)

    Article  ADS  Google Scholar 

  70. T.-J. Wang, Y. Zhang, C. Wang, Laser Phys. Lett. 11, 025203 (2014)

    Article  ADS  Google Scholar 

  71. R.-N. Alexander, P. Wang, N. Sridhar, M. Chen, O. Pfister, N.-C. Menicucci, Phys. Rev. A 94, 032327 (2016)

    Article  ADS  Google Scholar 

  72. W. Fan, P. Wang, O. Pfister, Broadband quasiphasematching for large-scale entanglement in quantum optical frequency combs, in CLEO: 2014, OSA Technical Digest (Optical Society of America, Washington, DC, 2014) paper JW2A.126

  73. M. Chen, N.-C. Menicucci, O. Pfister, Phys. Rev. Lett. 112, 120505 (2014)

    Article  ADS  Google Scholar 

  74. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, O. Pfister, Phys. Rev. Lett. 107, 030505 (2011)

    Article  ADS  Google Scholar 

  75. Y.-B. Sheng, F.-G. Deng, Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  76. Y.-B. Sheng, F.-G. Deng, Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  77. Y.-B. Sheng, L. Zhou, Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  78. F.-G. Deng, Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  79. T.-J. Wang, S.-Y. Song, G.-L. Long, Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  80. B.-C. Ren, F.-F. Du, F.-G. Deng, Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  81. B.-C. Ren, G.-L. Long, Opt. Express 22, 6547 (2014)

    Article  ADS  Google Scholar 

  82. X. Li, S. Ghose, Laser Phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  83. B.-C. Ren, G.-L. Long, Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  84. H.-J. Liu, Y. Xia, J. Song, Quantum Inf. Process. 15, 2033 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  85. L. Zhou, Y.-B. Sheng, Opt. Commun. 313, 217 (2014)

    Article  ADS  Google Scholar 

  86. Y.-B. Sheng, L. Zhou, L. Wang, S.-M. Zhao, Quantum Inf. Process. 12, 1885 (2013)

    Article  ADS  Google Scholar 

  87. Y.-B. Sheng, L. Zhou, Entropy 15, 1776 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  88. Y.-B. Sheng, L. Zhou, J. Opt. Soc. Am. B 30, 678 (2013)

    Article  ADS  Google Scholar 

  89. B.-C. Ren, F.-F. Du, F.-G. Deng, Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  90. F.-F. Du, T. Li, G.-L. Long, Ann. Phys. 375, 105 (2016)

    Article  ADS  Google Scholar 

  91. Y.-B. Sheng, L. Zhou, G.L. Long, Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  92. D. Patrick, T. Calarco, S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)

    Article  Google Scholar 

  93. D. Burgarth, K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M.-B. Plenio, Phys. Rev. A 81, 040303 (2010)

    Article  ADS  Google Scholar 

  94. S. Hoyer, F. Caruso, S. Montangero, M. Sarovar, T. Calarco, M.-B. Plenio, K.-B. Whaley, New J. Phys. 16, 045007 (2014)

    Article  ADS  Google Scholar 

  95. V. Siddhu, Quantum Inf. Process. 14, 3005 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  96. R. Ceccarelli, G. Vallone, F.-D. Martini, P. Mataloni, A. Cabello, Phys. Rev. Lett. 103, 160401 (2009)

    Article  ADS  Google Scholar 

  97. C.-Y. Li, H.-Y. Zhou, Y. Wang, F.-G. Deng, Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  98. F. Gao, S.-J. Qin, Q.-Y. Wen, F.-C. Zhu, Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  Google Scholar 

  99. T. Chaneliere, D.-N. Matsukevich, S.-D. Jenkins, S.-Y. Lan, T.-A.B. Kennedy, A. Kuzmich, Nature 438, 833 (2005)

    Article  ADS  Google Scholar 

  100. A.-I. Lvovsky, B.-C. Sanders, W. Tittel, Nat. Photonics 3, 706 (2009)

    Article  ADS  Google Scholar 

  101. D.-S. Ding, Raman quantum memory of photonic polarized entanglement, in Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles (Springer, Singapore, 2018), p. 91

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-wen Zhao.

Additional information

Contribution to the Topical Issue “Quantum Correlations”, edited by Marco Genovese, Vahid Karimipour, Sergei Kulik, and Olivier Pfister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhao, Zw. High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom. Eur. Phys. J. D 73, 58 (2019). https://doi.org/10.1140/epjd/e2019-90374-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90374-y

Navigation