Skip to main content

Advertisement

Log in

Optical spectrum of monolayer and coaxial quantum wires: Impact of spin-orbit interaction

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Simultaneous effects of spin-orbit interaction, external electric and magnetic fields and quantum confinement on the optical absorption coefficient and refractive index of a mono-layer and coaxial quantum wires are investigated in this paper. Finite element method and numerical calculations are established to find energy eigenvalues, energy eigenfunctions and transition dipole moments to obtain desired optical parameters. Results show that spin-orbit interaction exhibits different effects at various field strengths and dimensions. Due to the anti-crossing of energy states and tunneling effect new results are observed in comparison with usual nanostructures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.-H. Qi, X.-J. Kong, J.-J. Liu, Phys. Rev. B 58, 10578 (1998).

    Article  ADS  Google Scholar 

  2. T. Kaneko, M. Koshino, T. Ando, Phys. Rev. B 78, 245303 (2008).

    Article  ADS  Google Scholar 

  3. T. Puangmali, M. Califano, P. Harrison, Phys. Rev. B 78, 245104 (2008).

    Article  ADS  Google Scholar 

  4. B. Wu, A. Heidelberg, J.J. Boland, Nat. Mater. 4, 525 (2005).

    Article  ADS  Google Scholar 

  5. J. Hu, T.W. Odom, C.M. Leiber, ACS 32, 435 (1999).

    Google Scholar 

  6. J.-S. Lee, S.-K. Sim, B. Min, K. Cho, S.W. Kim, S. Kim, J. Cryst. Growth 267, 145 (2004).

    Article  ADS  Google Scholar 

  7. J.I. Martinez, F. Calle-Vallejo, E. Abadc, J.A. Alonsod, RSC Adv. 4, 34696 (2014).

    Article  Google Scholar 

  8. P.J. Pauzauskie, P. Yang, Mater. Today 9, 36 (2006).

    Article  Google Scholar 

  9. M. Meyyappan, M.K. Sunkara, Inorganic nanowires, applications, properties and characterization (CRC Press, USA, 2010).

    Book  Google Scholar 

  10. P. Harison, Quantum Wells, Wires and Dots (John Wiley and Sons, England, 2006).

  11. S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nature 468, 1084 (2010).

    Article  ADS  Google Scholar 

  12. S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J. Kelly, A.F. Hebard, J. Electron. Mater. 35, 862 (2006).

    Article  ADS  Google Scholar 

  13. K. Hashimoto, N. Iizuka, T. Kimura, Phys. Rev. D. 91, 086003 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Hoffmann, S.D. Bader, Appl. Phys. Rev. 4, 047001 (2015).

    Article  Google Scholar 

  15. G.H. Ding, B. Dong, Phys. Rev. B 76, 125301 (2007).

    Article  ADS  Google Scholar 

  16. Q.F. Sun, X.C. Xie, J. Wang, Phys. Rev. Lett. 98, 196801 (2007).

    Article  ADS  Google Scholar 

  17. G.Y. Huang, S.D. Liang, EPL 86, 67009 (2009).

    Article  ADS  Google Scholar 

  18. H. Tetlow, M. Gradhand, Phys. Rev. B 87, 075206 (2013).

    Article  ADS  Google Scholar 

  19. W. Wang, M. Dvornik, M.A. Bisotti, D. Chernyshenko, M. Beg, M. Albert, A. Vansteenkiste, B.V. Waeyenberge, A.N. Kuchko, V.V. Kruglyak, H. Fangohr, Phys. Rev. B 92, 054430 (2015).

    Article  ADS  Google Scholar 

  20. J. Linder, K. Halterman, Phys. Rev. B 90, 104502 (2014).

    Article  ADS  Google Scholar 

  21. S. Debald, B. Kramer, Phys. Rev. B 71, 115322 (2005).

    Article  ADS  Google Scholar 

  22. I. Jeong, M. Sung, G.S. Jeong, K. Yoo, J. Woo, Phys. Stat. Sol. A 204, 526 (2007).

    Article  ADS  Google Scholar 

  23. C.A. Perroni, D. Berciox, V.M. Ramaglia, V. Carudella, J. Phys. Condens. Matter. 19, 186227 (2007).

    Article  ADS  Google Scholar 

  24. G. Wang, Q. Guo, Phys. B 403, 37 (2008).

    Article  ADS  Google Scholar 

  25. E.I. Rashba, Phys. Rev. B 79, 161409 (2009).

    Article  ADS  Google Scholar 

  26. E.L. Ivchenko, Optical spectroscopy of semiconductor nanostructures (Alpha Science Interaction Ltd., UK, 2005).

  27. S. Schmitt-Rink, D.S. Chemela, D.A.B. Miller, Adv. Phys. 38, 89 (1989).

    Article  ADS  Google Scholar 

  28. W. Xie, Phys. B 403, 4319 (2008).

    Article  ADS  Google Scholar 

  29. E. Rosencher, Ph Bois, Phys. Rev. B 44, 11315 (1991).

    Article  ADS  Google Scholar 

  30. G. Rezaei, Z. Mousazadeh, B. Vaseghi, Phys. E 42, 1477 (2010).

    Article  Google Scholar 

  31. G. Wang, K. Guo, Phys. E 28, 14 (2005).

    Article  Google Scholar 

  32. T. Chwiej, Phys. E 94, 139 (2017).

    Article  Google Scholar 

  33. B. Vaseghi, A. Ghaffari, Phys. E 81, 163 (2016).

    Article  Google Scholar 

  34. A. Ghafari, B. Vaseghi, G. Rezaei, S.F. Taghizadeh, M.J. Karimi, Superlattices Microstruct. 101, 397 (2017).

    Article  ADS  Google Scholar 

  35. D. Najafi, B. Vaseghia, G. Rezaei, R. Khordad, EPJP 302, 133 (2018).

    Google Scholar 

  36. A. Vartanian, A. Kirakosyan, K. Vardanyan, Superlattices Microstruct. 109, 655 (2017).

    Article  ADS  Google Scholar 

  37. I.A. Kokurin, Phys. E 74, 264 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the theoretical analysis, calculations and preparation of the manuscript.

Corresponding author

Correspondence to Behrooz Vaseghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, D., Vaseghi, B., Abbasi, K. et al. Optical spectrum of monolayer and coaxial quantum wires: Impact of spin-orbit interaction. Eur. Phys. J. D 73, 268 (2019). https://doi.org/10.1140/epjd/e2019-100308-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100308-6

Keywords

Navigation