Skip to main content
Log in

Ionization energies and structures of small lanthanum oxide clusters (La2O3)n.LaO (n = 1–3)

  • Regular Article
  • Cluster and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Small lanthanum oxide clusters were produced in a laser-ablation molecular beam setup and studied by mass spectrometry and laser threshold photoionization spectroscopy. Mass spectrometry investigations of neutral clusters revealed certain stoichiometries, (La2O3)n and (La2O3)n.LaO (n = 1–6) were stable. For cation clusters, similar stoichiometric preference was reported by previous authors. The stoichiometric preference of the oxides was not affected by oxygen concentrations. Ionization thresholds and vertical ionization energies (VIEs) were measured for the (La2O3)n.LaO (n = 1–3) neutral clusters from the photoionization efficiency curves. The energetically low-lying structural isomers for these clusters along with their adiabatic and vertical ionization energies were computed from the density functional theory using B3LYP and PW91GGA exchange correlation functionals. Favorable agreement between the computed and experimental ionization energies allows assignments of the ground state structures for these clusters. For La3O4, a C3v-like structure has been found as the ground state built on La-O-La bonds with their usual oxidation states of +3 for La and −2 for O atoms. For larger clusters La5O7 and La7 O10, however, a trend towards forming more compact structures with few metal and O sites having higher coordination numbers have been found as the ground states and are suggested to be present in the molecular beam.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Vajda, M.G. White, ACS Catal. 5, 7152 (2015).

    Article  Google Scholar 

  2. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 24, 5408 (2012).

    Article  Google Scholar 

  3. E. Rohart, V. Bellière-Baca, K. Yokota, V. Harlé, C. Pitois, Top. Catal. 42, 71 (2007).

    Article  Google Scholar 

  4. M. Fleys, Y. Simon, P.-M. Marquaire, Ind. Eng. Chem. Res. 46, 1069 (2007).

    Article  Google Scholar 

  5. J.D. Lessard, I. Valsamakis, M. Flytzani-Stephanopoulos, Chem. Commun. 48, 4857 (2012).

    Article  Google Scholar 

  6. Y. Lei, C. Chu, S. Li, Y. Sun, J. Phys. Chem. C 118, 7932 (2014).

    Article  Google Scholar 

  7. J.-H. Meng, X.-J. Deng, Z.-Y. Li, S.-G. He, W.-J. Zheng, Chem. Eur. J. 20, 5580 (2014).

    Article  Google Scholar 

  8. L. Andrews, M. Zhou, G.V. Chertihin, J. Phys. Chem. A 103, 6525 (1999).

    Article  Google Scholar 

  9. R. Klingeler, G. Luttgens, N. Pontius, R. Rochow, P.S. Bechthold, M. Neeb, W. Eberhardt, Eur. Phys. J. D 9, 263 (1999).

    Article  ADS  Google Scholar 

  10. T.K. Todorova, I. Infante, L. Gagliardi, J.M. Dyke, J. Phys. Chem. A 112, 7825 (2008).

    Article  Google Scholar 

  11. Y. Gong, C. Ding, M. Zhou, J. Phys. Chem. A 113, 8569 (2009).

    Article  Google Scholar 

  12. M.J.Y. Jarvis, V. Blagojevic, G.K. Koyanagi, D.K. Bohme, Phys. Chem. Chem. Phys. 12, 4852 (2010).

    Article  Google Scholar 

  13. L. Wu, Y. Liu, C. Zhang, S. Li, D.A. Dixon, D.S. Yang, J. Chem. Phys. 137, 034307 (2012).

    Article  ADS  Google Scholar 

  14. S.G. Wang, D.K. Pan, W.H.E. Schwarz, J. Chem. Phys. 102, 9296 (1995).

    Article  ADS  Google Scholar 

  15. Z.J. Wu, W. Guan, J. Meng, Z.M. Su, J. Cluster Sci. 18, 444 (2007).

    Article  Google Scholar 

  16. J.K. Gibson, J. Appl. Phys. 78, 1274 (1995).

    Article  ADS  Google Scholar 

  17. M.J. Van Stipdonk, D.R. Justes, R.D. English, E.A. Schweikert, J. Mass Spectrom. 34, 677 (1999).

    Article  ADS  Google Scholar 

  18. Z.D. Reed, M.A. Duncan, J. Phys. Chem. A 112, 5354 (2008).

    Article  Google Scholar 

  19. L. Wu, C. Zhang, S.A. Krasnokutski, D.-S. Yang, J. Chem. Phys. 137, 084312 (2012).

    Article  ADS  Google Scholar 

  20. L. Wu, C. Zhang, S.A. Krasnokutski, D.-S. Yang, J. Chem. Phys. 140, 224307 (2014).

    Article  ADS  Google Scholar 

  21. J.K. Gibson, J. Phys. Chem. 98 (1994) 11321.

    Article  Google Scholar 

  22. X.-L. Ding, Z.-Y. Li, J.-H. Meng, Y.-X. Zhao, S.-G. He, J. Chem. Phys. 137, 214311 (2012).

    Article  ADS  Google Scholar 

  23. S.G. Nakhate, S. Mukund, S. Bhattacharyya, J. Quant. Spectrosc. Radiat. Transfer 111, 394 (2010).

    Article  ADS  Google Scholar 

  24. P. Lievens, P. Thoen, S. Bouckaert, W. Bouwen, F. Vanhoutte, H. Weidele, R.E. Silverans, A. Navarro-Vázquez, P. von Ragué Schleyer, J. Chem. Phys. 110, 10316 (1999).

    Article  ADS  Google Scholar 

  25. EMSL Basis Set Exchange Library, https://bse.pnl.gov/bse/portal. (a) La LANL2TZ basis set ref.: P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)L.E. Roy, P.J. Hay, R.L. Martin, J. Chem. Theory Comput. 4, 1029 (2008)P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 284 (1985)P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985)La (Def2-TZVPPD) basis set ref.:D. Rappoport, F. Furche, J. Chem. Phys. 133, 134105 (2010)(b) O LANL2DZ basis set ref.:T.H. Dunning Jr., P.J. Hay, in Methods of Electronic Structure Theory, edited by H.F. Schaefer III (PLENUM PRESS, 1977), Vol. 2O (aug-cc-pwCVTZ) basis set ref.:T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989)R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

  26. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., GAUSSIAN 03, Revision A.1 (Gaussian Inc., Pittsburgh, PA, 2003).

  27. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  28. D.-B. Zhang, J. Shen, J. Chem. Phys. 120, 5104 (2004).

    Article  ADS  Google Scholar 

  29. A. Lyalin, A.V. Solov’yov, W. Greiner, Phys. Rev. A 74, 043201 (2006).

    Article  ADS  Google Scholar 

  30. M.R. France, J.W. Buchanan, J.C. Robinson, S.H. Pullins, J.L. Tucker, R.B. King, M.A. Duncan, J. Phys. Chem. A 101, 6214 (1997).

    Article  Google Scholar 

  31. T. Bergmann, T.P. Martin, J. Chem. Phys. 90, 2848 (1989).

    Article  ADS  Google Scholar 

  32. J. De Haeck, S. Bhattacharyya, H.T. Le, D. Debruyne, N.M. Tam, V.T. Ngan, E. Janssens, M.T. Nguyen, P. Lievens, Phys. Chem. Chem. Phys. 14, 8542 (2012).

    Article  Google Scholar 

  33. P. Carette, J. Mol. Spectrosc. 140, 269 (1990).

    Article  ADS  Google Scholar 

  34. G. Verhaegen, S. Smoes, J. Drowart, J. Chem. Phys. 40, 239 (1964).

    Article  ADS  Google Scholar 

  35. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), Vol. IV.

  36. D. Schooss, P. Weis, O. Hampe, M.M. Kappes, Philos. Trans. R. Soc. A 368, 1211 (2010).

    Article  ADS  Google Scholar 

  37. G. von Helden, M.-T. Hsu, N. Gotts, M.T. Bowers, J. Phys. Chem. 97, 8182 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soumen Bhattacharyya or Sanjay G. Nakhate.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2019-100185-5

Electronic supplementary material

Supplementary Material

DOCX file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Sen, P., Mukund, S. et al. Ionization energies and structures of small lanthanum oxide clusters (La2O3)n.LaO (n = 1–3). Eur. Phys. J. D 73, 158 (2019). https://doi.org/10.1140/epjd/e2019-100185-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100185-5

Keywords

Navigation