Skip to main content
Log in

HCS(A2A″)-based insights into the effect of vibrational excitation on the reactions C+SH (v = 0–20, j = 0) → S+CH, H+CS

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of vibrational excitation on reaction C+SH (v = 0–20, j = 0) → S+CH, H+CS is investigated on the excited potential energy surface of HCS(A2A″) by the quasi-classical trajectory method. The obtained reaction probability, total integral cross section (ICS), and the impact parameter show that the influence of vibration excitation presents different characteristics on different reaction channels. The vibrational state-resolved ICSs, differential cross sections as well as two-angle distribution functions P(θr), P(ϕr) of products for different vibrational quantum numbers of reactant are investigated. These results show that (i) the products have obvious forward–backward scattering feature; (ii) for different reactions, the distribution P(θr) varies with vibrational quantum number of reactant; (iii) at high vibrational excitations of the reactant, the insertion mechanism becomes apparent in this reaction, so the product molecules are more positively oriented along the positive direction of the scattering plane.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.I. Kaiser, W. Sun, A.G. Suits, J. Chem. Phys. 106, 5288 (1997)

    ADS  Google Scholar 

  2. H.H. Lee, R.P.A. Bettens, E. Herbst, Astron. Astrophys. Suppl. Ser. 119, 111 (1996)

    ADS  Google Scholar 

  3. H. Habara, S. Yamamoto, C. Ochsenfeld, M. Head-Gordon, R.I. Kaiser, Y.T. Lee, J. Chem. Phys. 108, 8859 (1998)

    ADS  Google Scholar 

  4. H. Habara, S. Yamamoto, T. Amano, J. Chem. Phys. 116, 9232 (2002)

    ADS  Google Scholar 

  5. H. Habara, S. Yamamoto, J. Chem. Phys. 112, 10905 (2000)

    ADS  Google Scholar 

  6. H. Habara, S. Yamamoto, J. Mol. Spectrosc. 219, 30 (2003)

    ADS  Google Scholar 

  7. M. Agúndez, N. Marcelino, J. Cernicharo, M. Tafalla, Astron. Astrophys. 611, L1 (2018)

    ADS  Google Scholar 

  8. Y.Z. Song, L.L. Zhang, S.B. Gao, Q.T. Meng, Sci. Rep. 6, 37734 (2016)

    ADS  Google Scholar 

  9. L.L. Zhang, S.B. Gao, Y.Z. Song, Q.T. Meng, J. Phys. B: At. Mol. Opt. Phys. 51, 065202 (2018)

    ADS  Google Scholar 

  10. L.L. Zhang, S.B. Gao, Y.Z. Song, D.G. Yue, G.M. Chen, Q.T. Meng, Can. J. Phys. 95, 1219 (2017)

    ADS  Google Scholar 

  11. T. Stoecklin, P. Halvick, J.C. Rayez, J. Mol. Struct. (Theochem.) 163, 267 (1988)

    Google Scholar 

  12. T. Stoecklin, J.C. Rayez, B. Duguay, Chem. Phys. 148, 381 (1990)

    Google Scholar 

  13. T. Stoecklin, J. Rayez, B. Duguay, Chem. Phys. 148, 399 (1990)

    Google Scholar 

  14. A.I. Voronin, Chem. Phys. 297, 49 (2004)

    Google Scholar 

  15. J.C. Yuan, Z.X. Duan, S.F. Wang, J.Y. Liu, K.L. Han, Phys. Chem. Chem. Phys. 20, 20641 (2018)

    Google Scholar 

  16. A. Zanchet, O. Roncero, N. Bulut, Phys. Chem. Chem. Phys. 18, 11391 (2016)

    Google Scholar 

  17. T. Zhang, X.-M. Qian, X.N. Tang, C.Y. Ng, Y. Chiu, D.J. Levandier, J.S. Miller, R.A. Dressler, J. Chem. Phys. 119, 10175 (2003)

    ADS  Google Scholar 

  18. R.A. Dressler, Y. Chiu, J. Chem. Phys. 125, 132306 (2006)

    ADS  Google Scholar 

  19. P. Gamallo, R. Martinez, J.D. Sierra, M. Gonzalez, Phys. Chem. Chem. Phys. 16, 6641 (2014)

    Google Scholar 

  20. J. Mayneris, J.D. Sierra, M. González, J. Chem. Phys. 128, 194307 (2008)

    ADS  Google Scholar 

  21. J. Mayneris-Perxachs, M. González, J. Phys. Chem. A 113, 4105 (2009)

    Google Scholar 

  22. P. Gamallo, P. Defazio, M. González, J. Phys. Chem. 115, 11525 (2011)

    Google Scholar 

  23. P. Gamallo, F. Huarte-Larrañaga, M. González, J. Phys. Chem. A 117, 5393 (2013)

    Google Scholar 

  24. H.W. Song, H. Guo, J. Phys. Chem. A 119, 6188 (2015)

    Google Scholar 

  25. Y.H. Wang, M. Peng, J.Y. Tong, Y.L. Wang, J. Chem. Sci. 127, 1497 (2015)

    Google Scholar 

  26. S.B. Gao, J. Zhang, Y.Z. Song, Q.T. Meng, Eur. Phys. J. D 69, 111 (2015)

    ADS  Google Scholar 

  27. S.B. Gao, L.L. Zhang, Y.Z. Song, Q.T. Meng, Chem. Phys. Lett. 651, 233 (2016)

    ADS  Google Scholar 

  28. J. Zhang, S.B. Gao, H. Wu, Q.T. Meng, J. Phys. Chem. A 119, 8959 (2015)

    Google Scholar 

  29. X.L. Wang, F. Gao, S.B. Gao, L.L. Zhang, Y.Z. Song, Q.T. Meng, Chin. Phys. B 27, 043104 (2018)

    ADS  Google Scholar 

  30. Y.Z. Song, L.L. Zhang, E. Cao, Q.T. Meng, M.Y. Ballester, Theor. Chem. Acc. 136, 38 (2017)

    Google Scholar 

  31. L.L. Zhang, Y.Z. Song, S.B. Gao, Q.T. Meng, J. Phys. Chem. A 122, 4390 (2018)

    Google Scholar 

  32. M. Karplus, R.N. Porter, R.D. Sharma, J. Chem. Phys. 43, 3259 (1965)

    ADS  Google Scholar 

  33. G.C. Schatz, M.C. Colton, J.L. Grant, J. Phys. Chem. 88, 2971 (1984)

    Google Scholar 

  34. R. Sayós, J. Hernando, R. Francia, M. González, Phys. Chem. Chem. Phys. 2, 523 (2000)

    Google Scholar 

  35. M. González, I. Miquel, R. Sayós, J. Chem. Phys. 115, 2530 (2001)

    ADS  Google Scholar 

  36. K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996)

    ADS  Google Scholar 

  37. K.L. Han, L. Zhang, D.L. Xu, G.Z. He, N.Q. Lou, J. Phys. Chem. A 105, 2956 (2001)

    Google Scholar 

  38. M.D. Chen, K.L. Han, N.Q. Lou, Chem. Phys. Lett. 357, 483 (2002)

    ADS  Google Scholar 

  39. J. Davidsson, G. Nyman, J. Chem. Phys. 92, 2407 (1990)

    ADS  Google Scholar 

  40. G. Nyman, J. Davidsson, J. Chem. Phys. 92, 2415 (1990)

    ADS  Google Scholar 

  41. A.J.C. Varandas, Chem. Phys. Lett. 225, 18 (1994)

    ADS  Google Scholar 

  42. A. Karton, J.M.L. Martin, Theor. Chem. Acc. 115, 330 (2006)

    Google Scholar 

  43. A.J.C. Varandas, J. Chem. Phys. 126, 244105 (2007)

    ADS  Google Scholar 

  44. A.J.C. Varandas, J. Chem. Phys. 113, 8880 (2000)

    ADS  Google Scholar 

  45. Robert J. Le Roy, J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017)

    ADS  Google Scholar 

  46. F.J. Aoiz, L. Banares, V.J. Herrero, J. Phys. Chem. A 110, 12546 (2006)

    Google Scholar 

  47. P.G. Jambrina, I. Montero, F.J. Aoiz, J. Aldegunde, J.M. Alvarino, Phys. Chem. Chem. Phys. 14, 16338 (2012)

    Google Scholar 

  48. R.S. Tan, H.C. Zhai, F. Gao, D.M. Tong, S.Y. Lin, Phys. Chem. Chem. Phys. 18, 15673 (2016)

    Google Scholar 

  49. J.C. Polanyi, Angew. Chem. Int. Ed. 26, 952 (2010)

    Google Scholar 

  50. J. Zhao, Y. Luo, Chin. Phys. B 20, 043402 (2011)

    ADS  Google Scholar 

  51. X. Zhang, T.X. Xie, M.Y. Zhao, K.L. Han, Chin. J. Chem. Phys. 15, 169 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Tian Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, DG., Zhang, LL., Zhao, J. et al. HCS(A2A″)-based insights into the effect of vibrational excitation on the reactions C+SH (v = 0–20, j = 0) → S+CH, H+CS. Eur. Phys. J. D 73, 219 (2019). https://doi.org/10.1140/epjd/e2019-100172-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100172-x

Keywords

Navigation