Skip to main content
Log in

Electron-impact cross sections of X2CO (X = H, F, Cl, Br) from ionization threshold to 5 keV

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Various electron-impact cross sections are obtained for halogenated derivatives of formaldehyde like H2CO, F2CO, Cl2CO, Br2CO using the Single Centre Expansion method. The molecular wavefunction of the targets are obtained from the multi-centre expansion of the Gaussian-type orbitals within the single determinant Hartree Fock self consistent field scheme. The effects due to static, correlation-polarization and exchange included to model the electron-molecule interactions are approximated by their local nature. The correlation-polarization potential includes short and long range polarization electron dynamical effects. The dipole and higher order multipole terms are considered in the multipole expansion of the target at centre of mass. The coupled scattering equations are solved using Volterra integral form to obtain the elastic cross sections. The inelastic contributions to collision process are approximated by ionization cross sections. The two cross sections are added to obtain the total cross sections from ionization threshold to 5 keV. The collision data generated from this approach are consistent with the available results. The study of scattering from homologous series has helped in proposing a simple empirical formula to estimate the total cross sections for any member of the homologous family.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.M. Ariyasinghe, Radiat. Phys. Chem. 68, 79 (2003)

    ADS  Google Scholar 

  2. C. Szmytkowski, P. Mozejko, A. Krzysztofowicz, Radiat. Phys. Chem. 68, 307 (2003)

    ADS  Google Scholar 

  3. J. Tennyson, Phys. Rep. 491, 296 (2010)

    Google Scholar 

  4. S.P. Khare, Introduction to the Theory of Collisions of Electrons with Atoms and Molecules (Springer, US, 2001)

    Google Scholar 

  5. K.N. Joshipura, N. Mason, Atomic-Molecular Ionization by Electron Scattering: Theory and Applications (Cambridge University Press, 2019)

  6. A. Jain, K.L. Baluja, Phys. Rev. A 45, 202 (1992)

    ADS  Google Scholar 

  7. F.A. Gianturco, V. Di Martino, A. Jain, Il Nuovo Cimento D 14, 411 (1992)

    ADS  Google Scholar 

  8. F.A. Gianturco, D.G. Thompson, A.K. Jain, in Computational Methods for Electron Molecule Collisions, edited by*.xmlW.M. Huo, F.A. Gianturco(Plenum, New York, 1994)

  9. F.A. Gianturco, R.R. Lucchese, N. Sanna, A. Talamo, in Electron Collisions with Molecules, Clusters, and Surfaces, edited by*.xmlH. Ehrhardt, L.A. Morgan(Plenum, New York, 1994)

    Google Scholar 

  10. A.P.P. Natalense, R.R. Lucchese, J. Chem. Phys. 111, 5344 (1999)

    ADS  Google Scholar 

  11. F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys. 100, 6464 (1994)

    ADS  Google Scholar 

  12. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 128, 139 (2000)

    ADS  Google Scholar 

  13. H.H.H. Homeier, E.O. Steinborn, J. Mol. Struct. Theochem 368, 31 (1996)

    Google Scholar 

  14. S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967)

    ADS  Google Scholar 

  15. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  16. R. Curik, F.A. Gianturco, N. Sanna, J. Phys. B 33, 2705 (2000)

    ADS  Google Scholar 

  17. A. Jain, F.A. Gianturco, J. Phys. B 24, 2387 (1991)

    ADS  Google Scholar 

  18. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    ADS  Google Scholar 

  19. F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)

    ADS  Google Scholar 

  20. S. Kaur, A. Bharadvaja, K.L. Baluja, Phys. Rev. A 83, 062707 (2011)

    ADS  Google Scholar 

  21. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Rev. A 87, 062703 (2013)

    ADS  Google Scholar 

  22. A. Bharadvaja, S. Kaur, K.L. Baluja, Phys. Rev. A 91, 032701 (2015)

    ADS  Google Scholar 

  23. A. Bharadvaja, S. Kaur, K.L. Baluja, Pramana - J. Phys. 89, 30 (2017)

    ADS  Google Scholar 

  24. Y.K. Kim, W. Hwang, N.M. Weinberger, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997)

    ADS  Google Scholar 

  25. M.J. Frisch, et al., Gaussian 03 (Gaussian Inc, Wallingford, CT, 2003)

  26. NIST, Computational Chemistry Comparison and Benchmark DataBase, http://cccbdb.nist.gov

  27. N. Sanna, I. Baccarelli, G. Morelli, Comput. Phys. Commun. 114, 142 (2009)

    Google Scholar 

  28. A. Chutjian, J. Chem. Phys. 61, 4279 (1974)

    ADS  Google Scholar 

  29. L.E. Snyder, D. Buhl, B. Zuckermann, P. Palmer, Phys. Rev. Lett. 22, 679 (1969)

    ADS  Google Scholar 

  30. J.P. Pinto, G.R. Gladstone, Y.L. Yung, Science 210, 183 (1980)

    ADS  Google Scholar 

  31. A.W. Schwartz, R.M. de Graaf, J. Mol. Evol. 35, 101 (1993)

    ADS  Google Scholar 

  32. S.A. Benner, H.-J. Kim, M.-J. Kim, A. Ricardo, Cold Spring Harb. Perspect. Biol. 2, a003467 (2010)

    Google Scholar 

  33. B. Boudaffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 28, 1658 (2000)

    ADS  Google Scholar 

  34. A.A. Sobrinho, L.E. Machado, S.E. Michelin, L. Mu-Tao, L.M. Brescansin, J. Mol. Struct. Theochem 539, 65 (2001)

    Google Scholar 

  35. M. Vinodkumar, K.N. Joshipura, C. Limbachiya, N.J. Mason, Phys. Rev. A 74, 022721 (2006)

    ADS  Google Scholar 

  36. M. Vinodkumar, H. Bhutadia, C. Limbachiya, K.N. Joshipura, Int. J. Mass Spectrom. 308, 35 (2011)

    Google Scholar 

  37. M. Vinodkumar, H. Bhutadia, B. Antony, N. Mason, Phys. Rev. A 84, 052701 (2011)

    ADS  Google Scholar 

  38. A. Zecca, E. Trainotti, L. Chiari, G. Garcia, F. Blanco, M.H.F. Bettega, M.T. do N. Varella, M.A.P. Lima, M.J. Brunger, J. Phys. B: At., Mol. Opt. Phys. 44, 195202 (2011)

    ADS  Google Scholar 

  39. J.R. Vacher, F. Jorand, N. Blin-Simiand, S. Pasquiers, Chem. Phys. Lett. 476, 178 (2009)

    ADS  Google Scholar 

  40. D. Gupta, B. Anthony, J. Chem. Phys. 141, 054303 (2014)

    ADS  Google Scholar 

  41. Y. Tang, S. Yedave, O. Byl, J. Despres, E. Tien, S. Bishop, J. Sweeney, in21st International Conference on Ion Implantation Technology (2016), p. 176

  42. Y. Mitsui, Y. Ohira, T. Yonemura, T. Takaichi, A. Sekiya, T.J. Beppu, J. Electrochem. Soc. 151, G297 (2004)

    Google Scholar 

  43. F. Temps, H.G. Wagner, Appl. Phys. B 29, 13 (1982)

    ADS  Google Scholar 

  44. A.R. Calloway, E.J. Danielewicz, Int. J. Infrared Milli. Waves 2, 933 (1981)

    ADS  Google Scholar 

  45. J. Franklin, Chemosphere 27, 1565 (1993)

    ADS  Google Scholar 

  46. R. Zander, C.P. Rinsland, E. Mahieu, M.R. Gunson, C.B. Farmer, M.C. Abrams, M.K.W. Ko, J. Geophys. Res. 99, 737 (1994)

    Google Scholar 

  47. J. Kaur, N. Mason, B. Antony, Phys. Rev. A 92, 052702 (2015)

    ADS  Google Scholar 

  48. H.L. Cox, R.A. Bonham, J. Chem. Phys. 47, 2599 (1967)

    ADS  Google Scholar 

  49. K.C. Nicolaou, Z. Yang, J.J. Liu, H. Ueno, P.G. Nantermet, R.K. Guy, C.F. Claiborne, J. Renaud, E.A. Couladouros, K. Paulvannan, E.J. Sorensen, Nature 367, 630 (1994)

    ADS  Google Scholar 

  50. W. Schneider, W. Diller, in Ullmann’s Encyclopedia of Industrial (Wiley-VCH, 2012), Vol. 26, p. 624

  51. M.J. Parkington, T.A. Ryan, K.R. Seddon, J. Chem. Soc., Dalton Trans. 2, 257 (1997)

    Google Scholar 

  52. Y. Ju, W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015)

    Google Scholar 

  53. A. Starikovskiy, Philos. Trans. R. Soc. A 373, 20150074 (2015)

    ADS  Google Scholar 

  54. D.A. Dixon, K.A. Peterson, J.S. Francisco, J. Phys. Chem. A 104, 6227 (2000)

    Google Scholar 

  55. K. Fedus, G. Karwasz, Eur. Phys. J. D 71, 138 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Bharadvaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadvaja, A., Kaur, S. & Baluja, K.L. Electron-impact cross sections of X2CO (X = H, F, Cl, Br) from ionization threshold to 5 keV. Eur. Phys. J. D 73, 199 (2019). https://doi.org/10.1140/epjd/e2019-100142-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100142-x

Keywords

Navigation