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Abstract. Models of spontaneous wave function collapse describe the quantum-to-classical transition by
assuming a progressive breakdown of the superposition principle when the mass of the system increases,
providing a well-defined phenomenology in terms of a non-linearly and stochastically modified Schrödinger
equation, which can be tested experimentally. The most popular of such models is the continuous sponta-
neous localization (CSL) model: in its original version, the collapse is driven by a white noise, and more
recently, generalizations in terms of colored noises, which are more realistic, have been formulated. We will
analyze how current non-interferometric tests bound the model, depending on the spectrum of the noise. We
will find that low frequency purely mechanical experiments provide the most stable and strongest bounds.

1 Introduction

Since the birth of quantum mechanics with its strik-
ing differences compared to our classical intuition, the
quantum-to-classical transition has puzzled the scientific
community. The scientific debate, first confined to con-
ceptual arguments, now has an experimental counterpart,
thanks to technological developments, which allow to put
at test the questions about the boundaries between the
classical and quantum realms [1–4].

The quantum-to-classical transition is consistently
described in terms of collapse models [5,6]. These are
phenomenological models, which modify the standard
Schrödinger dynamics by introducing new suitable non-
linear and stochastic terms, which properly describe the
collapse of the wave-function.

The continuous spontaneous localization (CSL) model
[7] is the most studied among collapse models, and nowa-
days it represents a commonly accepted alternative to
standard quantum mechanics. The stochastic terms char-
acterizing this model depend on two parameters: the
collapse rate λ and the noise correlation length rC. Based
on alternative theoretical considerations, different numer-
ical values have been proposed: λ = 10−16 s−1 and rC =
10−7 m by Ghirardi et al. [8]; λ = 10−8±2 s−1 for rC =
10−7 m, and λ = 10−6±2 s−1 for rC = 10−6 m by Adler [9].
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However, since the CSL model is phenomenological, at
present the values of the parameters can only be bounded
by experiments.

Although only recently the scientific community has
started developing dedicated experiments [10,11], one can
infer bounds on the CSL parameters by investigating
the predictions of the model for suitable experimental
scenarios. One can divide them in two classes: interfero-
metric experiments and non-interferometric ones. The first
class includes those experiments where ideally a spatial
superposition is created in an interferometer, and the cor-
responding interference pattern is measured. This is the
case of cold-atom [12] and molecular [13–16] interferome-
try, and entanglement experiments with diamonds [17,18].
Conversely, the experiments falling in the second class are
those where no superposition is generated, the collapse
being detected indirectly through the random motion
which is always associated to it. These experiments involve
cold atoms [19], optomechanical systems [10,20–25], X-ray
measurements [26], phonon excitations in crystals [27,28].
Note that in non-interferometric experiments one can also
consider systems which are (truly) macroscopic. In such
a case, due to the amplification mechanism, the collapse
can be more significant and easier to detect. This has been
shown for example in [10,29] for a micrometer cantilever,
and in [30,31] for human-scale gravitational wave detec-
tors: these experiments establish the strongest bounds on
λ for rC > 10−6 m, while X-ray measurements [26], which
also employ human-scale objects, set the strongest bounds
for rC < 10−6 m.

Although CSL well describes the collapse process, it has
two weak points. The first one is that the interaction with
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the collapse noise heats up the system of interest, making
its average energy increase linearly. Although such a heat-
ing has rather long time-scales (making it negligible in
most situations), this is something one eventually would
like to remove. This has been resolved by the dissipative
extension of the model [5,15,16,32–34].

The second weak point concerns the spectrum of the
CSL noise, which is flat, being the noise white. If one
thinks that the noise providing the collapse has a phys-
ical origin, it cannot be white but colored, with a cut
off. This extension of the CSL model has already been
formulated [15,35–40], and we will refer to it as “col-
ored CSL” (cCSL): this is the subject of the present
article. In particular, we will investigate the bounds
that non-interferometric experiments place on the col-
lapse parameters λ and rC, when a colored noise with
exponentially decaying correlation function is considered.

The paper is organized as follows: in Section 2 we intro-
duce the cCSL model and we compute its contribution
to the density noise spectrum (DNS) of optomechanical
systems. In Section 3, we quickly present the cCSL predic-
tions for other relevant non-interferometric experiments:
X-ray measurements [41] and bulk heating [27,28]. In
Section 4, we use these theoretical formulas to derive the
bounds on the cCSL parameters from available experi-
mental data, and in Section 5 we discuss the results and
draw our conclusions.

2 CSL model and optomechanical systems

Before digging into the details of the cCSL model, we
start by reviewing the basic features of CSL model, which
will be useful for the following analysis. As already briefly
described before, the CSL model modifies the standard
Schrödinger dynamics for the wave-function by adding
to it non-linear and stochastic terms [5]. Non-linearity
is required in order to suppress quantum superpositions,
while stochasticity has to be implemented in order to
avoid superluminal signaling and to recover the Born
rule in measurement situations [5]. These modifications
are devised in such a way that the motion of micro-
scopic objects is not significantly affected by them (hence
recovering standard quantum mechanics), while a built-
in amplification mechanics guarantees that macroscopic
bodies behave classically.

A non-linear stochastic collapse equation is rather diffi-
cult to solve. However, when one comes to the expectation
values of physical quantities, the CSL collapse can be
mimicked by the random potential [30]

V̂cCSL(t) = −~
√
λ

m0

∫
dz M̂(z)w(z, t), (1)

with w(z, t) a classical Gaussian noise characterized by

E[w(z, t)] = 0, E[w(z, t)w(x, s)] = δ(3)(z− x)f(t− s),
(2)

where E[ · ] denotes the stochastic average. In the gen-
eral case, w(z, t) has a correlation function f(t) with a

non-trivial (colored) spectrum. In particular, the stan-
dard CSL model is recovered with f(t) = δ(t), implying a
flat spectrum (white noise). In equation (1) we introduced

M̂(z), which is a locally averaged mass density operator:

M̂(z) =
m0

π3/4r
3/2
C

∑
n

e
−

(z−q̂n)2

2r2C , (3)

where q̂n is the position operator of the n-th nucleon of
the system and m0 is a reference mass chosen equal to the
one of a nucleon. When the spread in position of the cen-
ter of mass is much smaller than rC, under the rigid body
assumption, we can approximate the above expression
with [42]

M̂(z) 'M0(z) +

∫
dx

µ(x)

π3/4r
7/2
C

e
−

(z−x)2

2r2C (z− x) · q̂, (4)

where M0(z) is a complex function, µ(x) is the mass
density of the system and q̂ is the center of mass operator.

We now have all the key ingredients to evaluate the
effects of the CSL model on optomechanical systems
[42–44]. Their dynamics is conveniently described in terms
of a Langevin equation, which we here write down in its
one dimensional version (along the x direction), in the
limit of vanishing optical coupling [45]:

dx̂

dt
=

p̂

m
,

dp̂

dt
= −mω2

mx̂− γmp̂+ ξ̂(t) + FcCSL(t). (5)

Here, m is the mass of the system, ωm is the frequency
of the harmonic trap and γm is the damping constant.
We introduced two stochastic terms of different origin:

ξ̂(t) and FcCSL(t). The former is quantum, and describes
the thermal action of the surrounding environment, which
is supposed to be in equilibrium at temperature T . Its

average and correlation are 〈ξ̂(t)〉 = 0 and

〈ξ̂(t)ξ̂(s)〉 = ~mγm

∫
dω

2π
e−iω(t−s)ω

[
1 + coth

(
~ω

2kBT

)]
.

(6)

The second stochastic contribution is classical and
describes the CSL action on the system, according to
FcCSL(t) = i

~ [V̂cCSL(t), p̂]. Given the form of V̂cCSL(t) and

M̂(z) respectively in equations (1) and (4), we find
that [30]

FcCSL(t) =
~
√
λ

π3/4m0

∫
dzdx

µ(x)

r
7/2
C

e
−

(z−x)2

2r2C (z− x)xw(z, t).

(7)

We note that, with reference to equation (3), without
approximations the stochastic force would be an operator.
However, since in the Taylor expansion of equation (4) we
considered only the terms up to the first order in the cen-
ter of mass position operator, FcCSL(t) becomes a function
(we restrict to this case throughout the paper).
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Equation (5) allows us to derive the density noise
spectrum, which quantifies the overall noise on the system.

2.1 Density noise spectrum

The DNS S(ω) characterizes the motion of an optome-
chanical system in its steady state [46]. It is defined
as the Fourier transform of the fluctuation δx̂(t) =
x̂(t) − x̂SS of the position operator around its steady

state x̂SS: S(ω) = 1
2

∫ +∞
−∞ dτ e−iωτE [〈{δx̂(t), δx̂(t+ τ)}〉] ,

where 〈 · 〉 denotes the quantum expectation value. The
DNS can also be written in terms of δx̃(ω), which is the
Fourier transform of δx̂(t):

S(ω) =
1

4π

∫ +∞

−∞
dΩE [〈{δx̃(ω), δx̃(Ω)}〉] . (8)

Following the standard prescription [46,47], one can derive
from equation (5) the equations of motion of δx̂(t) and
of the similarly defined momentum fluctuations δp̂(t) =
p̂(t)− p̂SS. By solving these equations in the Fourier space,
we get:

δx̃(ω) =
1

m

ξ̃(ω) + F̃cCSL(ω)

(ω2
m − ω2)− iγmω

, (9)

where as general notation rule, we denote with tilde the
Fourier transform of a quantity. The correlation functions
of the noises, in Fourier space, read:

〈ξ̃(ω)ξ̃(Ω)〉 = 2π~mγmω
[
1 + coth

(
~ω

2kBT

)]
δ(ω + Ω),

E
[
{F̃cCSL(ω), F̃cCSL(Ω)}

]
= 2π~2ηf̃(ω)δ(ω + Ω), (10)

where f̃(ω) is the Fourier transform of f(t) and

η =
λr3

C

π3/2m2
0

∫
dk|µ̃(k)|2k2

xe
−k2r2C , (11)

where µ̃(k) is the Fourier transform of the mass density.
By exploiting equations (8)–(11) to evaluate the DNS,
in the high temperature approximation we obtain the
following identity:

S(ω) =
2mγmkBT + ScCSL(ω)

m2[(ω2
m − ω2)2 + γ2

mω
2]
, (12)

where ScCSL(ω) = 1
4π

∫
dΩE[{F̃cCSL(ω), F̃cCSL(Ω)}] is the

CSL contribution to the DNS.
In the standard CSL model, whose noise is white,

one gets:

SCSL = ~2 λr3
C

π3/2m2
0

∫
dk|µ̃(k)|2k2

xe
−k2r2C , (13)

which is independent of ω, being the noise spectrum flat.
Conversely, in its colored extension, one has:

ScCSL(ω) = SCSL × f̃(ω). (14)

The frequency dependent contribution due to the noise
correlation function potentially can lead to relevant mod-
ifications of the bounds on the collapse parameters λ
and rC.

3 Other non-interferometric tests

We briefly report the theoretical analysis of other two sig-
nificant non-interferometric tests of collapse models: X-ray
measurements [41] and low temperature measurements of
phonon vibrations [27,28], which we will use to infer the
bounds on the cCSL parameters. Also cold atom experi-
ments [19] are significant for testing CSL; as they have
been fully analyzed in [40], we refer to that paper for
their derivation, and we will simply report the result in
the following section.

3.1 X-ray emission

In testing CSL with X-ray measurements [39,41,48–51],
the basic idea is that electrons and protons in the sam-
ple material are accelerated by the collapse noise and
emit radiation, which can be detected. Under suitable
approximations the associated photon emission rate reads
[34]

dΓ (ω)

dω
=

e2~η
2π2ε0c3m2

e

1

ω
f̃(ω), (15)

where e is the unitary charge, ε0 the dielectric constant of
vacuum and c the speed of light, me is the electron mass
and η = λm2

e/(2m
2
0r

2
C). The standard CSL expression is

obtained by setting f̃(ω) = 1.

3.2 Phonon excitation

Recently a novel way to test CSL was proposed, setting
strong bounds on λ for rC < 10−6 m [27,28]. The idea is
that the CSL noise modifies the phonon spectrum in a
material, while heating it. This modification is quantified
by the energy gain rate per mass unit:

dE

dtdM
=

3

4

~2

r2
Cm

2
0

λeff, (16)

where

λeff =
2λr5

C

3π3/2

∫
dq e−q

2r2Cq2f̃(ωL(q)) (17)

with ωL(q) denoting the longitudinal phonon frequency,
which explicitly depends on the momentum q. In the white
noise case λeff = λ, recovering the standard CSL result for
the energy heating [27].

4 Experimental bounds

Having set all theoretical formulas, we pass now to deriv-
ing the bounds on the cCSL parameters from available
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experimental data. As an explicit example, we consider
an exponentially decaying noise correlation function with
correlation time Ω−1

c :

f(t− s) =
Ωc

2
e−Ωc|t−s|. (18)

Such a choice, besides being physically reasonable, allows
to easily recover the white noise limit for Ωc → ∞. This
form of the correlation function was already considered in
[37,40] in the context of colored modifications of collapse
models.

For the optomechanical setting discussed in Section 2,
our choice of noise corresponds to ScCSL(ω) in the Drude–
Lorentz form

ScCSL(ω) = SCSL

Ω2
c

Ω2
c + ω2

, (19)

where we see that Ωc plays the role of frequency cutoff on
the noise spectrum.

In a similar way, we can straightforwardly derive the
photon emission rate for this specific time correlation
function of the cCSL noise:

dΓ(ω)

dω
=

e2~η
2π2ε0c3m2

e

1

ω

Ω2
c

Ω2
c + ω2

. (20)

Again, in the limit of Ωc → +∞ we recover the expression
for the standard CSL.

As for CSL induced phonon excitation, having a col-
ored noise leads to more involved modifications of the
energy gain rate, as the frequency ωL(q) appearing in
equation (17) in general depends in a non-trivial way on
the momentum. For a monoatomic crystal, the dispersion
relation is [52]

ω2
L(q) =

4C

mA

sin2
(

1
2 |q|a

)
, (21)

where mA is the atomic mass, C is the force constant
between the nearest-neighbor crystal planes, whose dis-
tance a is of the order of 10−10 m. In the limit of q � 1/a,
which is valid for rC � 10−9 m1, one can approximate the
sine with its argument. Thus, we obtain

ωL(q) ' vS|q|, (22)

where vS is the speed of sound in the crystal (Eq. (22) is
valid also for more general crystals). Using this expression,
equation (17) becomes

λeff =
4λr2

CΩ2
c

3v2
S

[
1
2 −

r2
CΩ2

c

v2
S

+
√
π
r3
CΩ3

c

v3
S

e
r2CΩ2

c

v2S erfc
(
rCΩc

vS

)]
,

(23)

where erfc(x) = 1− erf(x).
Equations (19), (20) and (23) give the theoretical pre-

dictions for the cCSL model, which can be tested against

1 The relation in equation (17), shows that the wave number
density is peaked near to ∼ rC.

experimental data. The resulting bounds are reported in
Figure 1 for different choices of Ωc.

4.1 Details of the experimental setups

Before discussing the results, we briefly describe the
experimental setups, which we used in computing the
bounds.

AURIGA is an aluminum cylindrical bar of length 3 m,
radius 30 cm and mass 2300 cooled down at 4.2 K, whose
resonant elongation is magnetically monitored at a fre-
quency of ωm/2π ∼ 900 Hz [21]. The contribution to the
noise that can be atribuited to cCSL is ScCSL(ω) ' 1.4×
10−22 N2/Hz at ω/2π = 931 Hz, and the corresponding
bound is reported in Figure 1 in red.

LIGO is a Michelson interferometer, whose two 4 km
arms are configured as a Fabry-Perot cavity [22]. At
each extreme of the two arms, a cylindrical silica mir-
ror (density 2200 kg/m3, radius 17 cm and length 20 cm)
are suspended and oscillate at a frequency below 1 Hz,
while its noise is monitored in the 10− 103 Hz band. The
cCSL compatible contribution to the DNS is ScCSL(ω) '
9× 10−27 N2/Hz at ω/2π = 30− 35 Hz, which constrains
the CSL parameters as reported in blue in Figure 1.

LISA Pathfinder is a space-based experiment which
monitors the relative distance between two identical cubic
masses (length 4.6 cm, average distance 37.6 cm, mass
1.928 kg) at low frequencies [24,25]. We can attribuite
to cCSL a noise contribution of ScCSL(ω) = 3.15 ×
10−30 N2/Hz just above the mHz regime. The correspond-
ing bound is highlighted in green in Figure 1.

Two cantilever experiments were performed with
masses of 3.5 × 10−13 kg [20,29] and 1.2 × 10−10 kg [10].
Here, we focus on the second experiment, which consists
in a silica cantilever of dimension 450× 57× 2.5µm3 and
stiffness 0.4 N/m, to which is attached a ferromagnetical
sphere of radius 15.5µm and density 7.43 × 103 kg/m3.
The harmonic motion of the latter, which is character-
ized by a frequency ωm/2π = 8174.01 Hz, is monitored
with a SQUID. A CSL-like non-thermal contribution to
the DNS was measured, taking the value ScCSL(ω) =
1.87 ± 0.16 aN2/Hz. Assuming that the measured extra
noise is due to cCSL, the values of the cCSL parameters
lie on the upper purple line in Figure 1. Conversely, if such
a noise can be attributed to standard sources, the exper-
iment sets an upper bound corresponding with the lower
purple line in figure.

The case of X-ray measurements [39,41,48–51] is slightly
different from previous ones because it relies on a dif-
ferent physical mechanism, the spontaneous emission of
radiation rather than the Brownian motion. The expres-
sion for the photon emission rate in equation (20) is
compared with the experimental measure, which gives
4π2ε0c

3m2
0ω

d
Γ (ω)dω/e2~ . 803 s−1m−2 [41]. The corre-

sponding upper bound is reported in light blue in Figure 1.
In low temperature experiments [53] there is a residual

heating of about 10−11 W/kg. This value should be com-
pared with the energy rate in equation (16), where λeff is
estimated via equation (23) with vS = 3000 m/s (the speed
of sound in copper at low temperatures) [27]. The upper
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Fig. 1. Upper and lower bounds on the cCSL parameters λ and rC for three values of the frequency cutoff: Ωc = +∞
(top left panel) corresponding to standard CSL, Ωc = 1015 Hz (top right), Ωc = 104 Hz (bottom left), and Ωc = 101 Hz (bottom
right). Red, blue and green lines (and respective shaded regions): upper bounds (and exclusion regions) from AURIGA, LIGO
and LISA Pathfinder, respectively. Purple region: upper bound from cantilever experiment. Light blue region: upper bound
from X-ray measurements. Orange and grey regions: upper bound from cold atom experiment [19,40] and from bulk heating
experiments [27]. The black dashed line shows the lower bound based on theoretical arguments [15].

bound corresponding to these experiments is reported in
grey in Figure 1.

5 Discussion and conclusion

The bounds reported in Figure 1 refer to four values of
the cutoff frequency Ωc: 1, 104, 1015 s−1 and∞, the latter
case corresponding to the standard CSL model.

For Ωc = 1015 s−1, we notice the first change in the
parameter space due to the colored extension of the
model. The bound from X-ray measurements becomes
weaker: the reason is that frequency of the X-rays (ω ∼
1019 s−1), at which the collapse noise is sampled, exceeds
the cutoff frequency. The next to vanish is the bound on
phonon excitations, which samples the noise at frequen-
cies ∼1011 s−1. Similarly, the bound from the cantilever
experiment weakens for ΩC ≤ 104 s−1, as shown in the

https://epjd.epj.org/
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last panel of Figure 1. The same happens for the bounds
from AURIGA, LIGO and LISA Pathfinder when the cut-
off frequency takes values Ωc . 103, 102 and 10−2 s−1,
respectively. Eventually, for a cutoff at Ωc = 101 s−1, the
only relevant bounds are those coming from cold atom
experiments and LISA Pathfinder.

If one assumes that cCSL has a cosmological origin,
which is reasonable considering the universality of the
noise, a hint on the value of Ωc could come from the
behaviour of cosmological fields [6]. If one takes the cosmic
microwave background (CMB) radiation, or the relic neu-
trino background, one has Ωc ∼ 1012 s−1 [54]. For such a
value, the cCSL bound from X-rays is completely washed
away. Thus, the bound from bulk heating effects [27,28]
becomes the strongest. For Ωc = 1011 s−1 also the lat-
ter vanishes and the cold atom bound [19,40] prevails
for rC < 10−7 m2, while for rC > 10−7 m the strongest
bounds are provided by cantilever experiments and LISA
Pathfinder.

We can conclude that low frequency, purely mechani-
cal experiments provide the most robust bounds on the
CSL parameters. These are resistant against changes in
the spectrum of the noise, unless of course for some reason
the low frequency part of the noise spectrum is suppressed,
which cannot be identified at the present stage. However,
this possibility would compromise the reduction process,
which requires non-vanishing low frequency components
[35,36].
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2 We believe that the CSL contribution to the posi-
tion diffusion of the cold atom cloud in the colored case,
described by equation (55) of [40], should be substituted with
3λA2~2
2m2r2C

[
t3

2
− t2τ

2
+ τ2

(
τ − (t+ τ)e−t/τ

)]
, where A is the atomic

number, m is the mass of the sigle atom and τ = Ω−1
c . We used such

an expression to draw the corresponding bounds in Figure 1.
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44. L. Diósi, Phys. Rev. Lett. 114, 050403 (2015)
45. M. Carlesso et al., (2017) New J. Phys. 20, 083022

(2018)
46. C. Gardiner, P. Zoller, Quantum Noise (Springer-Verlag,

Berlin, Heidelberg, 2004)
47. M. Paternostro et al., New J. Phys. 8, 107 (2006)

48. Q. Fu, Phys. Rev. A 56, 1806 (1997)
49. S.L. Adler, F.M. Ramazanoğlu, J. Phys. A 40, 13395
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