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Abstract. Calculations for open quantum systems are performed usually by taking into account their
embedding into one common environment, which is mostly the common continuum of scattering wavefunc-
tions. Realistic quantum systems are coupled however mostly to more than one continuum. For example,
the conductance of an open cavity needs at least two environments, namely the input and the output chan-
nel. In the present paper, we study generic features of the transfer of particles through an open quantum
system coupled to two channels. We compare the results with those characteristic of a one-channel system.
Of special interest is the parameter range which is influenced by singular points. Here, the states of the
system are mixed via the environment. In the one-channel case, the resonance structure of the cross section
is independent of the existence of singular points. In the two-channel case, however, new effects appear
such as coherence. An example is the enhanced conductance of an open cavity in a certain finite parameter
range. It is anti-correlated with the averaged phase rigidity of the eigenfunctions of the non-Hermitian
Hamilton operator.

1 Introduction

Quantum systems are localized in a finite well-defined
space area. This area may be determined by certain
boundary conditions (e.g. in quantum dots or quantum
billiards) or by self-organization (e.g. in atomic nuclei).
The shape of the nucleus is, indeed, an essential part of
nuclear spectroscopic investigations and is characteristic
of every nucleus.

The spectroscopic properties of quantum systems are
studied usually by means of a Hermitian Hamilton oper-
ator H, the eigenstates of which are discrete. Due
to the embedding of the system into a continuum
of scattering wavefunctions, the lifetimes of its states
become usually finite. This agrees with the experimen-
tally well-known finite lifetime of the states of a quantum
system which is described in the standard Hermitian
quantum theory by means of the tunneling mecha-
nism. An exception are the well-known bound states in
the continuum the lifetime of which is infinitely long.
These states occur under special conditions and are
described well in different papers for different systems,
e.g. [1–4].

Moreover, the embedding of a quantum system into
a continuum of scattering wavefunctions causes another
effect which is not contained in standard Hermitian quan-
tum theory: since every state of the system is coupled to
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the continuum, all states of the system may mix via the
environment. This so-called external mixing (EM) of the
states is a second-order process and occurs additionally
to the well-known direct (internal) mixing of the states
which is contained in every Hermitian Hamiltonian H.
In the standard Hermitian calculations, EM is effectively
taken into account as an additional contribution to the
internal mixing. Its characteristic features are lost in this
case.

Experimentally, an example of EM has been provided a
few years ago in a mesoscopic system. It has been shown in
[5] that two distinct quantum states are coupled through
a common continuum. In a further experiment, the
authors were able to show that EM survives even under
conditions of strongly non-equilibrium transport in the
system [6].

A possible EM of quantum states is very seldom consid-
ered in theory. It can easily be taken into account when the
properties of the system are described by a non-Hermitian
Hamiltonian H. In such a case, EM is involved explicitly
in the eigenfunctions of H, see [7–11].

In [11] the, at first glance, unexpected result has been
found that EM needs not to be considered when the sys-
tem is embedded in a common environment of scattering
wavefunctions. This result corresponds to the experience
obtained from many numerical studies on realistic systems
in which EM is not at all considered. Also the influence
of the singular exceptional points (EP) is not involved in
these calculations.
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Nevertheless, these results are not in contradiction with
the statement of non-Hermitian quantum physics that
EPs and EM may influence, to a great extent, the spectro-
scopic properties of open quantum systems. The point is
that EPs cause nonlinear processes in their neighborhood
[7–9] which are able to compensate the contributions that
arise from the EM of the states via the common environ-
ment [11]. Correspondingly, the cross section shows the
same resonance structure in the one-channel case when
calculated with EPs and EM or without them.

The situation is however different when the system is
embedded not only in one common environment, but in
several environments which exist independently of one
another. An example of such a situation is the decay of a
nuclear state into different states of the residual nucleus by
emission of a nucleon. In such a case, we have the different
so-called partial widths that characterize the decay of the
state i of the system in one of the open channels c. The
different channels c are defined by the decay of the state
i into different states of the residual nucleus by emission
of a nucleon. A channel is open when the energy differ-
ence between the state i and the state of the residual
nucleus is positive, i.e. when the emission of a particle is
allowed.

Another – and more important – example is the trans-
mission through, e.g., a quantum dot. In this case, at
least two different environments exist, namely that of
the entrance channel and that of the exit channel. Sev-
eral numerical studies performed with a non-Hermitian
Hamilton operator H on the basis of the tight-binding
model have shown interesting non-trivial results [12,13]:
the transmission probability is anti-correlated with the
phase rigidity of the eigenfunctions of the non-Hermitian
Hamilton operator (when averaged over energy in a cer-
tain energy window). That means it depends on internal
properties of the eigenfunctions of H.

An enhancement of transmission through quantum dots
or quantum billiards is found also in other studies, mostly
by varying the coupling strength of the system to the
environment. In [14,15], complex scaling is used while in
[16,17] the formation of a so-called superradiant state is
considered. In [12–15], the enhancement of the transmis-
sion is related to the properties of the eigenfunctions of
the non-Hermitian Hamilton operator H.

We mention here that the effects, which an environment
has on the transmission of particles through a quantum
dot, have been considered also in, e.g., [18]. In this paper,
the competing effects of Markovian and non-Markovian
mechanisms have been investigated.

It is the aim of the present paper to find typical spec-
troscopic features of an open quantum system that is
coupled to two particle-decay channels, which are indepen-
dent of one another. In Section 2 we discuss the effective
non-Hermitian Hamiltonian Heff which is used often in
describing realistic systems. In Section 3, we sketch the
formalism of the genuine non-Hermitian Hamiltonian;
and in Section 4 we show some typical numerical results.
A discussion of the obtained results can be found in
Section 5. Their relation to the results of other stud-
ies with non-Hermitian Hamiltonians is also discussed.
Concluding remarks can be found in Section 6.

2 Effective non-Hermitian Hamilton
operator Heff

Transfer and other processes with excitation of indi-
vidual resonance states are described successfully in
non-Hermitian quantum physics by using the effective
Hamiltonian [7]

Heff = H0 +
∑
c

V0c
1

E+ −Hc
Vc0 . (1)

Here, H0 is the Hamiltonian describing the correspond-
ing closed system with discrete states, (E+ − Hc)

−1 is
the Green function in the continuum with the Hamilto-
nian Hc describing the environment of decay channels,
and V0c, Vc0 stand for the coupling of the closed system
to the different channels c of the environment. The non-
Hermiticity of Heff arises from the second term of Heff , i.e.
from the perturbation of the system occurring under the
influence of its coupling to the environment. It is complex:
the real part arises from the principal value integral and
the imaginary one from the residuum (for details see [7]).

Sometimes, Heff = H0 + αW is assumed where W is
imaginary, and the properties of the system are studied as
a function of α (for examples see the review [7]). In [19],

the non-Hermitian operator is assumed to be Ĥ = Ĥ− iΓ̂ .
This operator allows us to study the general meaning of
the imaginary part of the non-Hermitian Hamiltonian,
i.e. dissipation. The information on the considered phys-
ical system (embedded into a well-defined environment),
which is involved in Heff , is however lost. In any case, the
non-Hermiticity of Heff arises from the second term which
is added to H0 as a perturbation.

The eigenfunctions of a non-Hermitian Hamilton oper-
ator are biorthogonal

H|Φi〉 = Ei|Φi〉 〈Ψi|H = Ei〈Ψi| . (2)

In the case of the symmetric Hamiltonian Heff , it is

Ψi = Φ∗i , (3)

and the eigenfunctions should be normalized according to

〈Φ∗i |Φj〉 = δij , (4)

in order to smoothly describe the transition from a closed
system with discrete states to a weakly open one with nar-
row resonance states. As a consequence of (4), the values
of the standard expressions are changed,

〈Φi|Φi〉 = Re (〈Φi|Φi〉) ; Ai ≡ 〈Φi|Φi〉 ≥ 1 , (5)

〈Φi|Φj 6=i〉 = i Im (〈Φi|Φj 6=i〉) = −〈Φj 6=i|Φi〉 ,
|Bj

i | ≡ |〈Φi|Φj 6=i| ≥ 0 . (6)

The advantage to describe the properties of the open
system by means of Heff consists, above all, in the possi-
bility to use the results obtained for the corresponding

https://epjd.epj.org/


Eur. Phys. J. D (2018) 72: 138 Page 3 of 9

closed system. In both cases, the properties are deter-
mined by nothing but the eigenstates of the many-body
system. Usually, experimental results on inelastic scatter-
ing and transfer of particles through a small system are
described well by Heff (examples can be found in [7]).

In (1), a singular point may appear, the so-called
exceptional point (EP), at which two eigenvalues of Heff

coalesce [20]. At these points, the two corresponding
eigenfunctions are not orthogonal. Instead

Φcr
1 → ± i Φcr

2 ; Φcr
2 → ∓ i Φcr

1 , (7)

according to analytical and numerical results [21–25]. An
EP is, according to its definition, related to the com-
mon environment in which the system is embedded. In
other words, it is well defined under the condition that
the system is embedded in only one continuum.

Far from EPs, the coupling of the localized system
to the environment influences the spectroscopic proper-
ties of the system only marginally [7,11]. The influence is
however nonvanishing also in this case, see e.g. the theoret-
ical results [26] for very small coupling strength between
system and environment, which are proven experimen-
tally [27]. These experimental results cannot be described
by Heff .

Another deficit of Heff is that this formalism cannot
be used for the description of systems with transfer of
excitons. An example is the photosynthesis in which not
any eigenstates are excited, see [28].

We will consider therefore in the next Section 3 a gen-
uine non-Hermitian Hamilton operator H which is much
less convenient for numerical calculations than Heff . It
gives us however a deeper insight into the reordering
processes occurring in open quantum systems under the
influence of the singular EPs.

3 Genuine non-Hermitian Hamiltonian H

3.1 Eigenvalues and eigenfunctions of H(2,1)

To begin with, we sketch the features typical for an open
quantum system embedded in one common continuum.
Details can be found in [7] and, above all, in [11]. They can
be discussed by means of the 2× 2 genuine non-Hermitian
matrix

H(2,1) =

(
ε

(1)
1 ≡ e(1)

1 + i
2γ

(1)
1 ω(1)

ω(1) ε
(1)
2 ≡ e(1)

2 + i
2γ

(1)
2

)
. (8)

Here, the e
(1)
i are the energies of the localized states i and

the γ
(1)
i are their widths.1 The ω(1) stand for the coupling

matrix elements of the two states via the common environ-
ment (1). They are complex where Re(ω(1)) arises from the

1 In contrast to the definition that is used in, for example, nuclear
physics, we define the complex energies before and after diagonal-
ization of H by εk = ek + i

2
γk and Ek = Ek + i

2
Γk, respectively,

with γk ≤ 0 and Γk ≤ 0 for decaying states. This definition will be
useful when discussing systems with gain (positive widths) and loss
(negative widths).

principal value integral and Im(ω(1)) from the residuum

[7]. The complex eigenvalues E(1)
i ≡ E(1)

i + 1
2Γ

(1)
i of H(2,1)

give the energies E
(1)
i and widths Γ

(1)
i of the states of the

localized part of the system. We call the operator H(2,1)

genuine since it is not related directly to any special quan-
tum system (in contrast to (1)). It contains nothing but
two states characterized by their complex energies εi and
their coupling matrix elements ω via the environment.

The eigenfunctions of H are biorthogonal, see (2)–(6).
It is meaningful to define the phase rigidity which is
a quantitative measure for the biorthogonality of the
eigenfunctions,

rk ≡
〈Φ∗k|Φk〉
〈Φk|Φk〉

= A−1
k . (9)

It is smaller than 1. Far from an EP, rk ≈ 1 while it
approaches the value rk = 0 when an EP is approached.

Additionally to the Hamiltonian (8), we will consider
the non-Hermitian matrix

H(2,1)
0 =

(
ε

(1)
1 ≡e

(1)
1 + i

2γ
(1)
1 0

0 ε
(1)
2 ≡e

(1)
2 + i

2γ
(1)
2

)
, (10)

which describes the system without any mixing of its
states via the environment. In other words, ω = 0 cor-
responds to vanishing EM of the eigenstates. The eigen-
functions Φi of H(2,1) can be represented in the set of

eigenfunctions {Φ0
i } of H(2,1)

0 ,

Φi =
∑

bij Φ
0
j ; bij = 〈Φ0∗

j |Φi〉 , (11)

under the condition that the bij are normalized by∑
j(bij)

2 = 1. The coefficients |bij |2 differ from the (bij)
2.

They contain the information on the strength of EM.
The main features characteristic of open quantum sys-

tems are described well by the eigenvalues and eigenfunc-
tions of (8). Typical values related to the eigenfunctions
are the phase rigidity (9) and the contribution of EM (11)
to their purity. All these values contain the influence of the
environment. They are proven experimentally, for details
see [7,11] and above all the review [29].

3.2 Schrödinger equation with H(2,1)

The Schrödinger equation (H(2,1) −E(1)
i |Φ

(1)
i 〉 = 0 may be

rewritten into a Schrödinger equation with source term
[7,11],

(H(2,1)
0 − E(1)

i ) |Φ(1)
i 〉 = −

(
0 ω
ω 0

)
|Φ(1)

i 〉 . (12)

In this representation, the coupling ω of the states i and
j 6= i of the localized system via the common environ-
ment of scattering wavefunctions (EM) is contained in the
source term of the Schrödinger equation, for details see [7].

Far from EPs, the coupling of the localized system to
the environment influences the spectroscopic properties of

https://epjd.epj.org/
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the system only marginally [7,11]. The influence is however
nonvanishing also in this case, see e.g. the experimental
results [27] for the case that the coupling between system
and environment is very small.

In the neighborhood of EPs, the coupling between
system and environment causes – according to math-
ematical studies – nonlinear effects in the Schrödinger
equation (12), see [7,11]. Among others, these effects lead
to a conservation of the resonance structure of the cross
section in the one-channel case which is therefore unaf-
fected by EM and by the existence of EPs. Thus, the
one-channel case cannot be used in order to test the results
of the non-Hermitian formalism.

3.3 Eigenvalues and eigenfunctions of H(2,2)

Let us now consider the 4× 4 non-Hermitian matrix

H(2,2) =


ε

(1)
1 ω(1) 0 0

ω(1) ε
(1)
2 0 0

0 0 ε
(2)
1 ω(2)

0 0 ω(2) ε
(2)
2

 . (13)

Here, ε
(1)
i ≡ e

(1)
i + i

2γ
(1)
i and ε

(2)
i ≡ e

(2)
i + i

2γ
(2)
i are the

complex energies of the localized states i relative to chan-

nel 1 and 2, respectively (see Footnote 1). Usually ε
(1)
i 6=

ε
(2)
i . The ω(1) and ω(2) stand for the coupling matrix ele-

ments of the two states via the environment 1 and 2,
respectively. The Hamiltonian (13) includes the fact that

the complex energy ε
(c)
i of the localized state i is different

relative to the two different channels c.
It might be astonishing that the Hamiltonian (13) con-

tains four states instead of the original two states. The
point is the following. Two states may mix, independently
of one another, via each of the two environments with the

result that the energies ε
(c)
i depend not only on the state

number i but also on the channel c. That means, every
state is formally doubled, since it is embedded into two
different environments (channels). The two environments
are different from and orthogonal to one another. Further,
the two states with equal i and different c arise from the
same state i of the localized part of the system. The zeros
in the matrix (13) express the corresponding fact that the
two states i relative to the two channels 1 and 2 cannot
interact with one another.

The eigenvalues E(c)
i ≡ E(c)

i + i
2Γ

(c)
i and eigenfunctions

Φ
(c)
i of (13) are characterized also by two numbers: the

number i of the state (i = 1, 2) of the localized part of the
system and the number c of the channel (c = 1, 2), called
environment, in which the system is embedded. Usually,

E
(1)
i 6= E

(2)
i and Γ

(1)
i 6= Γ

(2)
i . Also the wave functions Φ

(1)
i

and Φ
(2)
i differ from one another due to the EM of the

eigenstates via the environment 1 and 2, respectively. That
means, the system described by (13) has formally four
states (from a mathematical point of view). The original
two states related to the values i = 1 and i = 2 are doubled
due to the fact that each state i is coupled to the two
channels c = 1 and c = 2.

We mention further that the Hamiltonian (13) is for-
mally the same as the Hamiltonian (24) or rather (1) in
[28]. There is however a fundamental difference: in (1)
in [28], the transition of excitons (expressed by fluctua-
tions caused by EPs) is considered while (13) describes
the transition of particles. Furthermore, in (1) in [28] the
whole system is fully embedded into both environments
(1) and (2) which both are of completely different nature
and exist independently of one another. In contrast to
this, the Hamiltonian (13) describes a system, the states of
which are embedded partially in each of the two different
environments. These two different environments are also
independent of one another. They are, however, nothing
but parts of the total environment.

Without singularity in the considered parameter range

in relation to both channels, we have E
(1)
i ≈ E(2)

i , Γ
(1)
i ≈

Γ
(2)
i and Φ

(1)
i ≈ Φ

(2)
i . This case is realized in the decay

of nuclear states since their decay probability can be
determined only when the decaying state is well isolated
from other states. Otherwise, new problems arise from
the overlapping with other states [30,31]. The above case
is realized also in the transmission when the individual
transmission peaks are well isolated from one another.

Under the influence of a singularity relative to c = 1
and/or relative to c = 2, the eigenvalues and eigenfunc-

tions will be, however, different from one another, E
(1)
i 6=

E
(2)
i , Γ

(1)
i 6= Γ

(2)
i and Φ

(1)
i 6= Φ

(2)
i in the correspond-

ing parameter range. Such a situation may occur in the
transmission through a quantum dot or quantum billiard
[12,13].

In analogy to (10), we will consider also the non-
Hermitian Hamiltonian

H(2,2)
0 =


ε

(1)
1 0 0 0

0 ε
(1)
2 0 0

0 0 ε
(2)
1 0

0 0 0 ε
(2)
2

 , (14)

which describes the system without any mixing of its
states via any environment. In other words, ω(1) =
ω(2) = 0 corresponds to vanishing EM of the eigenstates
via an environment. The mixing of the eigenstates of
(13) can be represented in a set of eigenfunctions of (14)
in complete analogy to the relation (11) for two states
coupled to one common environment.

3.4 Schrödinger equation with H(2,2)

Using (14), we can write down the Schrödinger equation
with source term for the two-channel case in analogy to
(12) for the one-channel case. The corresponding equation
reads

(
H(2,2)

0 −E(c)
i

)
|Φ(c)

i

〉
=−


0 ω(1) 0 0
ω(1) 0 0 0

0 0 0 ω(2)

0 0 ω(2) 0

| Φ(c)
i

〉
.

(15)
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The source term depends on the coupling of the system to
both channels, i.e. on ω(1) and on ω(2). It does not depend

on the energies ε
(c)
i .

We repeat here that, according to their definition [20],
EPs occur only in the one-channel case, i.e. only in the two
submatrices related to channel 1 and channel 2, respec-
tively. They are not defined in the 4 × 4 matrix (13).
However, the EPs of the two submatrices in (13) may
influence the dynamics of the open two-channel system.

3.5 Non-Hermitian Hamiltonian and resonance
structure of the S matrix

An expression for the S matrix is derived and discussed in
detail in [32] by rewriting the Breit-Wigner expression for
one or more isolated resonances. According to this deriva-
tion, the resonance structure of the S matrix containing
two resonance states, can be obtained from the expression

S =
(E − E1 − i

2Γ1) (E − E2 − i
2Γ2)

(E − E1 + i
2Γ1) (E − E2 + i

2Γ2)
, (16)

for the case that two resonance states are coupled to a
common continuum of scattering wavefunctions, see also
[7,11]. The expression (16) is unitary. According to (16),
the resonance structure of the cross section is determined
exclusively by the spectroscopic values of the localized
part of the system, i.e. by the eigenvalues Ei = Ei + i/2 Γi

of the non-Hermitian Hamiltonian H. The expression (16)
allows us therefore to obtain reliable results for the two
channels when the phase rigidity of the eigenfunctions of
H is reduced (rk < 1) and when the eigenfunctions of
H contain EM, i.e. when they are mixed in the set of
eigenfunctions {Φ0

i } of H0 according to (11).
As shown in [7,11], the S matrix contains, generally,

nonlinear effects which are caused by the EM of the res-
onance states via the environment. The one-channel case
does, however, not allow us to prove the existence of these
nonlinear effects and of EM, since the resonance structure
of the cross section calculated with and without EM is the
same in this case [11]. This result agrees, on the one hand,
with the experience received from many different numeri-
cal studies in realistic cases which are performed without
taking into account EM. On the other hand, it is not in
contradiction with the conclusions received from the study
of non-Hermitian physics of open quantum systems for the
following reason.

According to the results obtained in [11] for the one-
channel case, the evolution of the system near to an EP
is driven exclusively by the nonlinear source term of the
Schrödinger equation (12) which describes the coupling
of the localized part of the system to the common envi-
ronment and is characteristic of the open quantum system
embedded in one environment. The calculations in [11] are
performed without varying ω, i.e. ω can not be responsible
for the width bifurcation occurring in these calculations
under the influence of an EP. Obviously, the nonlinear
source term is the driving force. It is able, in the one-
channel case, to largely conserve the resonance structure
of the cross section.

Fig. 1. Eigenvalues E(1,2)i ≡ E
(1,2)
i + i

2
Γ

(1,2)
i and eigenfunc-

tions Φ
(1,2)
i of the Hamiltonian H(2,2) as a function of a.

ω(1) = ω(2) = 0.5i (left), ω(1) = 0.5i; ω(2) = 0.1i (right).

Parameters: e1 = 1− a/2; e2 = a; left: γ
(1)
1 /2 = −0.4; γ

(2)
1 =

−0.35; γ
(1)
2 /2 = −0.35; γ

(2)
2 /2 = −0.4 (dashed lines in (a, b));

right: γ
(1)
1 /2 = −0.4; γ

(2)
1 = −0.08; γ

(1)
2 /2 = −0.35; γ

(2)
2 /2 =

−0.09 (dashed lines in (f, g)). At the critical parameter value
a = acr = 0.6494, the phase rigidity ri approaches the value 1.

The conservation of the resonance structure of the
cross section which is possible in the one-channel case,
is expected to be impossible, generally, in the two-channel
(or more-channel) case according to (15) since, generally,
ω(1) 6= ω(2) 6= 0. This gives the chance to test non-
Hermitian quantum physics by means of the two-channel
case. We will provide numerical results and discuss their
physical meaning in the following sections of the present
paper.

4 Numerical results

4.1 Eigenvalues and eigenfunctions of H(2,2)

For illustration, we show in Figure 1 a few typical numer-
ical results for two states in the two-channel case. The
results of the left column are obtained for the special case
ω(1) = ω(2) and those of the right column for the general

https://epjd.epj.org/
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Fig. 2. (a) Resonance structure and (b) contour plot of the

transmission with vanishing external mixing ω(1) = ω(2) = 0.
The parameters are the same as in Figure 1 (left). (a) full black
line: a = acr = 0.6949; dashed red line: a1 = 1.3; dotted blue
line: a2 = 0.0.

case ω(1) 6= ω(2). The numerical results for the eigenvalue

trajectories E(1,2)
i ≡ E(1,2)

i + i
2Γ

(1,2)
i and the eigenfunction

trajectories Φ
(1,2)
i of the Hamiltonian H(2,2) are obtained

by starting from parameter-dependent energies e
(1,2)
i and

parameter-independent widths γ
(1,2)
i . We consider two dif-

ferent cases: in one case, the widths γ
(1,2)
i of the two states

are equal, γ
(1)
i = γ

(2)
i (correspondingly to ω(1) = ω(2)),

while they are different from one another in the other

case, γ
(1)
i 6= γ

(2)
i .

The eigenvalue trajectories Figures 1a, 1b and 1f, 1g,

respectively, show that the widths Γ
(1,2)
i bifurcate in the

neighborhood of an EP. The energies of the two states
are equal in this parameter range. At the critical param-
eter value a = acr width bifurcation is maximum. Here
the phase rigidity approaches the value 1 (Figs. 1d and
1i), meaning that the two states become orthogonal at
this parameter value. The EM of the states via the con-
tinuum can not be neglected at this parameter value
(Figs. 1e and 1j).

While the eigenvalue trajectories ofH(2,2) are influenced
by the critical point a = acr mainly in its very neigh-
borhood, the eigenfunction trajectories are influenced in
a comparably large parameter range. This can be seen,
above all, in the phase rigidity (Figs. 1c, 1d, 1h and 1i)
which is a quantitative measure for the biorthogonality of
the eigenfunctions of H(2,2). This fact is known also from
calculations for the one-channel case [11].

We underline here once more that the results shown in
Figure 1 are obtained for N = 2 resonance states. They
show therefore boundary effects arising from the param-
eter range in which no resonance states exist. In realistic

Fig. 3. The same as Figure 2 but ω(1) � ω(2) 6= 0. The
parameters are the same as in Figure 1 (right).

systems, these boundary effects do, of course, not exist.
Instead, we see an interference picture to which all N
states contribute, see e.g. [30,31].

4.2 Resonance structure and contour plot
of transmission

Interesting information on the spectroscopic properties of
the localized part of the system is contained in the reso-
nance structure of the cross section which can be observed
experimentally. We consider the transition from channel
1 to channel 2 which simulates transmission. Using (16),
we have calculated the resonance structure of the trans-
mission at the critical parameter value acr and at two
values of a beyond the critical range (above) as well as
the corresponding contour plots (below).

In Figure 2, the results without EM (corresponding to
ω(1) = ω(2) = 0) are shown. There appear four states,
indeed, according to the results of analytical studies. This
picture is different from the resonance structure of the
cross section of a two-level system coupled to one chan-
nel characteristic of which is its double-hump structure
around maximum width bifurcation [7,11].

Figures 3 and 4 show the transmission through a two-
level system coupled to two channels with ω(c) 6= 0 in
the same parameter range around maximum width bifur-
cation. These figures illustrate that the double-hump
structure of the cross section is restored in the transmis-
sion (i.e. in the two-channel case) under the influence of
EM.

In Figure 3 (with different coupling strengths ω(1) �
ω(2) according to the eigenvalues and eigenfunctions of
Fig. 1 right), the double-hump structure around the max-
imum width distribution is very similar, indeed, to that of
the cross section in the one-channel case (solid black line in
Fig. 2 compared to solid black line in Fig. 4a in [11]). The

https://epjd.epj.org/
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Fig. 4. The same as Figure 2 but ω(1) = ω(2) 6= 0. The
parameters are the same as in Figure 1 (left).

contour plot of the transmission is however much richer
than the cross section in the one-channel case. This is
reflected also in the dotted (blue) and dashed (red) lines
of Figure 3a.

More interesting are the results shown in Figure 4 corre-
sponding to the eigenvalues and eigenfunctions of Figure 1
(left) with ω(1) = ω(2). Here, the double-hump structure
also appears. The bumps are however broadened in energy.
Due to this broadening, the transmission is enhanced in
a comparably large energy window. In this energy win-
dow, the phase rigidity averaged over energy, is reduced
(see Fig. 1).

5 Discussion of the results

5.1 External mixing

The results shown in Figures 1–4 show very clearly that
the mixing of the states via the environment (EM) plays
an important role in open quantum systems. This mixing
is a second-order effect and does not appear in standard
Hermitian quantum physics. While its influence onto the
spectroscopic properties of the localized part of the system
far from singular points is usually small, it becomes impor-
tant and determines the dynamics of the system in a finite
neighborhood of the critical parameter values a = acr.

5.2 Meaning of “points”

Our results show further that the dynamical properties of
the system are influenced by EPs not only at parameter
values that correspond to their “exact” position. Almost
the same properties arise near to these parameter val-
ues. This can be seen, e.g., in the width trajectories in
Figures 1b and 1g which bifurcate although the param-
eter values do not allow an exact crossing point of the
trajectories.

5.3 Two-channel systems and EPs

According to the mathematical studies by Kato [20], EPs
are defined in relation to one continuum. Their physi-
cal meaning is studied therefore, up to now, mostly in
systems that are embedded in one well-defined common
environment. For references see the review [7].

Most states of physical systems are coupled, however,
to more than one channel. For example, the transmission
through a small system (e.g. a quantum dot) is related
to, at least, two channels, the entrance and the exit chan-
nel. The transmission of particles through such systems is
studied by many authors in many different papers by using
different methods. The most popular methods start from
a Hermitian Hamilton operator and consider parameter
ranges beyond EPs.

5.4 Transmission

In the present paper, transmission is studied for the
first time in the framework of the non-Hermitian quan-
tum physics without additional assumptions. The only
assumption is that the (localized) system is embedded
in more than one environment (meaning that it is cou-
pled to more than one channel). Although the expression
(13) for the Hamiltonian H(2,2) seems to be arbitrary
or a mathematical subtleness, the obtained results show
that this genuine non-Hermitian Hamiltonian describes
the properties of the two-channel system according to
expectations.

5.5 One-channel versus two-channel systems

We compare the results obtained in the present paper
for the two-channel system, with those known for open
quantum systems embedded in one common environment.
The following properties are independent of the number
of channels.

(i) Far from singular points, the spectroscopic proper-
ties of the system are influenced only marginal by its
embedding into an environment. They are, however,
never exactly the same as those of a closed system.
This fact is proven experimentally [27].

(ii) Singular points change the system properties in a
certain finite neighborhood of their exact position.
Here, they cause the same observable effects which
are expected at their “exact” position.

(iii) At the critical parameter value acr, the eigenfunc-
tions of the non-Hermitian Hamilton operator H are
orthogonal (and not biorthogonal). At this param-
eter value, width bifurcation is maximum; and, in
the two-channel case, the transmission through the
system is enhanced. This effect is observable.

The one-channel case has however some special features.
The nonlinear processes involved in the non-Hermitian
dynamics, restore the characteristic resonance structure
of the cross section that has been obtained without tak-
ing into account EPs and EM. It is possible therefore to
describe the system properties, in the one-channel case,
without taking into account the characteristic features of

https://epjd.epj.org/
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an open quantum system [11]. The Figures 1–4 of our
paper show clearly that this possibility is really restricted
to the one-channel case. The information involved in the
more-channel cases is much richer.

5.6 Coupling strength to the two different channels

In order to consider a system that is coupled really to
two channels, the two coupling strengths ω(1) and ω(2)

should be of comparable value. Otherwise the system is
nothing but a one-channel system with a somewhat defec-
tive coupling strength. When ω(1) ≈ ω(2), the EPs in the
two different channels appear at almost the same value of
the parameter considered. In such a case it is possible to
trace the influence of the EP onto observable values such
as the cross section, compare Figure 3 with Figure 4. The
influence can be seen above all when ω(1) = ω(2).

5.7 Coherence in two-channel systems

In the two-channel case EPs cannot be seen directly. We
see only the critical value acr of the parameter a which
gives rise to new observable effects such as the enhance-
ment of the transmission at maximum width bifurcation.
This effect is measurable. The phase rigidity is 1 at acr

because the eigenfunctions of H are orthogonal at this
point. It is however rk < 1 in the neighborhood of acr.
Averaged over a certain parameter range around acr, the
phase rigidity is therefore reduced, while the transmission
is enhanced.

In [13], the transmission through a system with many
states is calculated numerically by using the tight-binding
lattice model (according to Datta [33]) with one channel
in each of the two attached identical leads. As a result
of this calculation, the phase rigidity, averaged over the
considered energy window, and the transmission are anti-
correlated. Thus, the two very different methods (each of
which solves the problem exactly) produce qualitatively
the same results.

These results show that coherence appears in two-
channel (and more-channel) systems. It appears addition-
ally to dissipation which exists in every open quantum
system. The EM is related to the environment and influ-
ences the different states of the system in the same
manner, i.e. coherently. Finally, it causes the cross section
broadening observed in Figure 4.2

Coherence is known to play an important role in
biophysical systems. According to our results, it is charac-
teristic of all open quantum systems which are coupled to
more than one open channel. It may be small; it is however
nonvanishing.

We underline once more that the above mentioned pro-
cesses are related exclusively to the properties of the eigen-
states of a non-Hermitian Hamilton operator. They are
not involved in any version of Hermitian quantum physics.

2 We underline here once more that the cross section broadening
observed in the present paper is not caused by an enhancement of the
coupling strength ω between system and environment (in difference
to the results of some earlier calculations). The value of ω is kept
constant in each calculation, as can be seen from the captions of the
figures.

For example, EM can be simulated, to some extent, in
the standard calculations with Hermitian Hamiltonian
by including it effectively into the Hamiltonian.
Its interesting relation to the critical parameter value acr

can, however, not be seen in such calculations.

6 Concluding remarks

Our results show that the genuine non-Hermitian Hamil-
tonian H can be used for the description of the charac-
teristic features of many-body systems with transfer of
particles. In this case, the Hamiltonian H is surely not the
most convenient one in order to describe a realistic system.
It demonstrates however that non-Hermitian quantum
physics is a powerful method that can explain many dif-
ferent features of open quantum systems, including those
that can be described successfully in standard theory.

It is very well known that the non-Hermitian part of
the Hamiltonian causes dissipation, which is character-
istic of all open quantum systems. In competition with
dissipation, coherence appears when the system is coupled
to at least two open channels. The competition between
coherence and dissipation becomes the more important
the more channels are open. It is the most interesting
feature of realistic open quantum systems.

The results of the present paper show furthermore that
the eigenfunctions of the non-Hermitian Hamilton oper-
ator H play an important role, above all their non-rigid
phases around the singular EPs; and their non-vanishing
external mixing via the environment. At the critical
parameter value acr, a short-lived state results from width
bifurcation. This state is similar to the so-called superradi-
ant state discussed in, e.g., [16,17]. The mechanism of the
formation of the superradiant state is however completely
different from that of the short-lived state discussed in the
present paper.

The critical point acr at which the eigenfunctions of the
non-Hermitian Hamilton operator H are orthogonal (and
not biorthogonal), appears in the one-channel as well as
in the two-channel problem (for the one-channel case see
[11]). Here, the quantum system and the environment into
which it is embedded, are in a state of equilibrium [34].

The same formalism of non-Hermitian quantum physics
that is able to describe properties of many-particle sys-
tems, can explain also experimental results which are
puzzling in standard Hermitian quantum physics. Exam-
ples are the explanation [35] of the so-called phase lapses
in mesoscopic systems as well as the understanding [28]
for the high efficiency of photosynthesis.

Summarizing we state that open quantum systems
embedded in two (or more) environments are abounded in
very many interesting aspects of non-Hermitian quantum
physics. They allow, on the one hand, to study character-
istic features of non-Hermitian quantum physics. On the
other hand, they provide the possibility of many promising
applications.

We are indebted to Jon Bird for valuable discussions. Open
access funding provided by Max Planck Society.
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