Skip to main content
Log in

Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dispersion relation for the Hasegawa space-charge wave propagating in a cylindrical waveguide dusty plasma containing collision-dominated ion stream is derived by using the fluid equations and the Poisson equation which lead to a Bessel equation. The solution of Bessel equation is null at the boundary and then the roots of the Bessel function would characterize the property of space-charge wave propagation. We have found that the Hasegawa space-charge wave can be excited for a large axial wave number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. The growth rate decreases with an increase of the radius of cylindrical waveguide as well as with an increase of the collision frequency. We found that the disturbance of wave can be damped only for small wave numbers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)

    Article  ADS  Google Scholar 

  2. P.K. Shukla, V.P. Silin, Phys. Scripta 45, 508 (1992)

    Article  ADS  Google Scholar 

  3. D.A. Mendis, Plasma Sources Sci. Technol. 11, A219 (2002)

    Article  ADS  Google Scholar 

  4. N.X. Wei, J.K. Xue, Phys. Plasmas 13, 052101 (2006)

    Article  ADS  Google Scholar 

  5. V. Yaroshenko, H. Thomas, G.E. Morfill, Phys. Plasmas 14, 082104 (2007)

    Article  ADS  Google Scholar 

  6. R.L. Merlino, A. Barkan, C. Thompson, N. D’Angelo, Phys. Plasmas 5, 1607 (1998)

    Article  ADS  Google Scholar 

  7. I. Pilch, A. Piel, T. Trottenberg, M.E. Koepke, Phys. Plasmas 14, 123704 (2007)

    Article  ADS  Google Scholar 

  8. M.-J. Lee, Y.-D. Jung, Phys. Plasmas 23, 052105 (2016)

    Article  ADS  Google Scholar 

  9. M.-J. Lee, Y.-D. Jung, Phys. Plasmas 23, 072107 (2016)

    Article  ADS  Google Scholar 

  10. M.-J. Lee, Y.-D. Jung, Phys. Plasmas 23, 094501 (2016)

    Article  ADS  Google Scholar 

  11. M. Rosenberg, P.K. Shukla, J. Plasma Phys. 77, 709 (2011)

    Article  ADS  Google Scholar 

  12. O. Buneman, Phys. Rev. Lett. 1, 8 (1958)

    Article  ADS  Google Scholar 

  13. A. Hasegawa, Plasma instabilities and nonlinear effects (Springer, Berlin, 1975)

  14. A. Hirose, H.M. Skarsgard, Phys. Rev. Lett. 33, 252 (1976)

    Article  ADS  Google Scholar 

  15. O. Mitarai, Y. Kawai, F. Kako, J. Phys. Soc. Jpn. 49, 1974 (1980)

    Article  ADS  Google Scholar 

  16. A. Sitenko, V. Malnev, Plasma physics theory (Chapman & Hall, London, 1995)

  17. H.L. Pécseli, Waves and oscillations in plasmas (CRC Press, Boca Raton, 2013)

  18. H. Kählert, Phys. Plasmas 22, 073703 (2015)

    Article  ADS  Google Scholar 

  19. M.-J. Lee, Y.-D. Jung, Plasma Sources Sci. Technol. 24, 032001 (2015)

    Article  ADS  Google Scholar 

  20. V.N. Tsytovich, G.E. Morfill, S.V. Vladimirov, H. Thomas, Elementary physics of complex plasmas (Springer, Berlin, 2008)

  21. P.K. Shukla, A.A. Mamun, Introduction to dusty plasma physics (Institute of Physics, Bristol and Philadelphia, 2002)

  22. N.A. Krall, A.W. Trivelpiece, Principles of plasma physics (McGraw-Hill, New York, 1973)

  23. K.-Z. Zhang, J.-K. Xue, Phys. Plasmas 17, 032113 (2010)

    Article  ADS  Google Scholar 

  24. M.-J. Lee, Y.-D. Jung, Plasma Phys. Control. Fusion 59, 095007 (2017)

    Article  ADS  Google Scholar 

  25. Z. Zakrzewski, M. Moisan, Plasma Sources Sci. Technol.4, 379 (1995)

    Article  ADS  Google Scholar 

  26. M. Moisan, R. Grenier, Z. Zakrzewski, G. Sauve, J. Microw. Power Electromagn. Energy 30, 59 (1995)

    Article  Google Scholar 

  27. M. Moisan, Z. Zakrzewski, R. Etemadi, J.C. Rostaing, J. Appl. Phys. 83, 5691 (1998)

    Article  ADS  Google Scholar 

  28. M. Jamil, M. Shahid, W. Ali, M. Salimullah, H.A. Shah, G. Murtaza, Phys. Plasmas 18, 063705 (2011)

    Article  ADS  Google Scholar 

  29. T.S. Ramazanov, Zh.A. Moldabekov, K.N. Dzhumagulova, M.M. Muratov, Phys. Plasmas 18, 103705 (2011)

    Article  ADS  Google Scholar 

  30. M. Jamil, Z. Mir, M. Asif, M. Salimullah, Phys. Plasmas 21, 092111 (2014)

    Article  ADS  Google Scholar 

  31. M. Akbari-Moghanjoughi, Phys. Plasmas 22, 022103 (2015)

    Article  ADS  Google Scholar 

  32. A.A. Khan, M. Jamil, A. Hussain, Phys. Plasmas 22, 092103 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Dae Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MJ., Jung, YD. Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam. Eur. Phys. J. D 71, 329 (2017). https://doi.org/10.1140/epjd/e2017-80582-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80582-x

Keywords

Navigation