Skip to main content
Log in

Nuclear spin relaxation of methane in solid xenon

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1–11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Pauling, Phys. Rev. 36, 430 (1930)

    Article  ADS  Google Scholar 

  2. H.F. King, D.F. Hornig, J. Chem. Phys. 44, 4520 (1966)

    Article  ADS  Google Scholar 

  3. H. Yasuda, Prog. Theor. Phys. 45, 1361 (1971)

    Article  ADS  Google Scholar 

  4. K. Nishiyama, T. Yamamoto, J. Chem. Phys. 58, 1001 (1973)

    Article  ADS  Google Scholar 

  5. D. Smith, Chem. Phys. 220, 279 (1997)

    Article  ADS  Google Scholar 

  6. B. Asmussen, M. Prager, W. Press, H. Blank, C.J. Carlie, J. Chem. Phys. 97, 1332 (1992)

    Article  ADS  Google Scholar 

  7. T. Nanba, M. Sagara, M. Ikezawa, J. Phys. Soc. Jpn. 48, 228 (1980)

    Article  ADS  Google Scholar 

  8. A. Cabana, G.B. Savitsky, D.F. Hornig, J. Chem. Phys. 48, 781 (1968)

    Article  Google Scholar 

  9. L.H. Jones, S.A. Ekberg, B.I. Swanson, J. Chem. Phys. 85, 3203 (1986)

    Article  ADS  Google Scholar 

  10. L.H. Jones, S.A. Ekberg, J. Chem. Phys. 87, 4368 (1987)

    Article  ADS  Google Scholar 

  11. E.B. Wilson Jr., J. Chem. Phys. 3, 276 (1935)

    Article  ADS  Google Scholar 

  12. R.F. Curl Jr., J.V.V. Kasper, K.S. Pitzer, J. Chem. Phys. 46, 3220 (1967)

    Article  ADS  Google Scholar 

  13. J.T. Hougen, in Physical chemistry II, edited by D.A. Ramsay (Butterworths, London, 1976), Vol. 3, pp. 75–125

  14. T. Sugimoto, K. Yamakawa, I. Arakawa, J. Chem. Phys. 143, 224305 (2015)

    Article  ADS  Google Scholar 

  15. F.H. Frayer, G.E. Ewing, J. Chem. Phys. 48, 781 (1968)

    Article  ADS  Google Scholar 

  16. Y. Miyamoto, M. Fushitani, D. Ando, T. Momose, J. Chem. Phys. 128, 114502 (2008)

    Article  ADS  Google Scholar 

  17. A. Lekic, Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, 2011

  18. A.J. Nijman, A.J. Berlinsky, Phys. Rev. Lett. 38, 408 (1977)

    Article  ADS  Google Scholar 

  19. A.J. Nijman, A.J. Berlinsky, Can. J. Phys. 58, 1049 (1980)

    Article  ADS  Google Scholar 

  20. S. Grieger, H. Friedrich, B. Asmussen, K. Guckelsberger, D. Nettling, W. Press, R. Scherm, Z. Phys. B 87, 203 (1992)

    Article  ADS  Google Scholar 

  21. W.L. Barnes, J. Susskind, R.H. Hunt, E.K. Plyler, J. Chem. Phys. 56, 5160 (1972)

    Article  ADS  Google Scholar 

  22. J. Susskind, J. Mol. Spectrosc. 45, 457 (1973)

    Article  ADS  Google Scholar 

  23. H. Friedmann, S. Kimel, J. Chem. Phys. 43, 3925 (1965)

    Article  ADS  Google Scholar 

  24. C.W. Kammeyer, D.R. Whitman, J. Chem. Phys. 56, 4419 (1972)

    Article  ADS  Google Scholar 

  25. P.L. Scott, C.D. Jeffries, Phys. Rev. 127, 32 (1962)

    Article  ADS  Google Scholar 

  26. L. Abouaf-Marguin, A.M. Vasserot, C. Pardanaud, X. Michaut, Chem. Phys. Lett. 480, 82 (2009)

    Article  ADS  Google Scholar 

  27. J.J. Kim, K.S. Pitzer, J. Chem. Phys. 66, 2400 (1977)

    Article  ADS  Google Scholar 

  28. M. Miki, T. Momose, Low Temp. Phys. 26, 661 (2000)

    Article  ADS  Google Scholar 

  29. H. Fenichel, B. Serin, Phys. Rev. 142, 490 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeru Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, T., Arakawa, I. & Yamakawa, K. Nuclear spin relaxation of methane in solid xenon. Eur. Phys. J. D 72, 42 (2018). https://doi.org/10.1140/epjd/e2017-80564-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80564-0

Keywords

Navigation