Skip to main content
Log in

Effective two-mode model in Bose-Einstein condensates versus Gross-Pitaevskii simulations

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the dynamics of three-dimensional Bose-Einstein condensates confined by double-well potentials using a two-mode (TM) model with an effective on-site interaction energy parameter. The effective on-site interaction energy parameter is evaluated for different numbers of particles ranging from a low experimental value to larger ones approaching the Thomas-Fermi limit, yielding important corrections to the dynamics. We analyze the time periods as functions of the initial imbalance and find a closed integral form that includes all interaction-driven parameters. A simple analytical formula for the self-trapping period is introduced and shown to accurately reproduce the exact values provided by the TM model. Systematic numerical simulations of the problem in 3D demonstrate the excellent agreement of the TM model for experimental parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  2. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)

    Article  ADS  Google Scholar 

  3. D. Ananikian, T. Bergeman, Phys. Rev. A 73, 013604 (2006)

    Article  ADS  Google Scholar 

  4. X. Jia, W. Li, J.Q. Liang, Phys. Rev. A 78, 023613 (2008)

    Article  ADS  Google Scholar 

  5. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  6. M. Melé-Messeguer, B. Juliá-Díaz, M. Guilleumas, A. Polls, A. Sanpera, New J. Phys. 13, 033012 (2011)

    Article  ADS  Google Scholar 

  7. M. Abad, M. Guilleumas, R. Mayol, M. Pi, D.M. Jezek, Europhys. Lett. 94, 10004 (2011)

    Article  ADS  Google Scholar 

  8. T. Mayteevarunyoo, B.A. Malomed, G. Dong, Phys. Rev. A 78, 053601 (2008)

    Article  ADS  Google Scholar 

  9. B. Xiong, J. Gong, H. Pu, W. Bao, B. Li, Phys. Rev. A 79, 013626 (2009)

    Article  ADS  Google Scholar 

  10. Q. Zhou, J.V. Porto, S. Das Sarma, Phys. Rev. A 84, 031607 (2011)

    Article  ADS  Google Scholar 

  11. B. Cui, L.C. Wang, X.X. Yi, Phys. Rev. A 82, 062105 (2010)

    Article  ADS  Google Scholar 

  12. M. Abad, M. Guilleumas, R. Mayol, M. Pi, D.M. Jezek, Phys. Rev. A 84, 035601 (2011)

    Article  ADS  Google Scholar 

  13. C.E. Creffield, Phys. Rev. A 75, 031607(R) (2007)

    Article  ADS  Google Scholar 

  14. J.-K. Xue, A.-X. Zhang, J. Liu, Phys. Rev. A 77, 013602 (2008)

    Article  ADS  Google Scholar 

  15. T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, Phys. Rev. Lett. 86, 040401 (2006)

    Article  Google Scholar 

  16. B. Liu, L.-B. Fu, S.-P. Yang, J. Liu, Phys. Rev. A 75, 033601 (2007)

    Article  ADS  Google Scholar 

  17. Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, M.K. Oberthaler, Phys. Rev. Lett. 94, 020403 (2005)

    Article  ADS  Google Scholar 

  18. B. Wang, P. Fu, J. Liu, B. Wu, Phys. Rev. A 74, 063610 (2006)

    Article  ADS  Google Scholar 

  19. A.R. Kolovsky, Phys. Rev. A 82, 011601(R) (2010)

    Article  ADS  Google Scholar 

  20. S.K. Adhikari, J. Phys. B.: At. Mol. Opt. Phys. 44, 075301 (2011)

    Article  ADS  Google Scholar 

  21. K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043030 (2009)

    Article  ADS  Google Scholar 

  22. T.F. Viscondi, K. Furuya, J. Phys. A 44, 175301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. De Liberato, C.J. Foot, Phys. Rev. A 73, 035602 (2006)

    Article  ADS  Google Scholar 

  24. D.M. Jezek, H.M. Cataldo, Phys. Rev. A 88, 013636 (2013)

    Article  ADS  Google Scholar 

  25. D.M. Jezek, P. Capuzzi, H.M. Cataldo, Phys. Rev. A 87, 053625 (2013)

    Article  ADS  Google Scholar 

  26. M. Albiez, Ph.D. thesis, University of Heidelberg, 2005

  27. M. Abad, M. Guilleumas, R. Mayol, F. Piazza, D.M. Jezek, A. Smerzi, Europhys. Lett. 109, 40005 (2015)

    Article  ADS  Google Scholar 

  28. Y. Huang, Q.-S. Tan, L.-B. Fu, X. Wang, Phys. Rev. A 88, 063642 (2013)

    Article  ADS  Google Scholar 

  29. L. Fu, J. Liu, Phys. Rev. A 74, 063614 (2006)

    Article  ADS  Google Scholar 

  30. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes: the art of scientific computing, 3rd edn. (Cambridge University Press, New York, 2007)

  31. W. Bao, D. Jaksch, P.A. Markowich, J. Comput. Phys. 187, 318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. L.J. LeBlanc, A.B. Bardon, J. McKeever, M.H.T. Extavour, D. Jervis, J.H. Thywissen, F. Piazza, A. Smerzi, Phys. Rev. Lett. 106, 025302 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Capuzzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigro, M., Capuzzi, P., Cataldo, H.M. et al. Effective two-mode model in Bose-Einstein condensates versus Gross-Pitaevskii simulations. Eur. Phys. J. D 71, 297 (2017). https://doi.org/10.1140/epjd/e2017-80382-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80382-4

Keywords

Navigation