Skip to main content
Log in

Quantum sensing of rotation velocity based on transverse field Ising model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system’s rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength δ between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Armenise, C. Ciminelli, F. Dell’Olio et al., Advances in gyroscope technologies [M] (Springer Science & Business Media, Berlin Heidelberg, 2010)

  2. B. Barrett, R. Geiger, I. Dutta et al., C. R. Phys. 15, 875 (2014)

    Article  ADS  Google Scholar 

  3. T.G. Walker, M.S. Larsen, Adv. At. Mol. Opt. Phys. 65, 373 (2016)

    Article  ADS  Google Scholar 

  4. T.W. Kornack, R.K. Ghosh, M.V. Romalis, Phys. Rev. Lett. 95, 230801 (2005)

    Article  ADS  Google Scholar 

  5. M. Larsen, M. Bulatowicz, in IEEE International, Frequency Control Symposium (FCS) (IEEE, 2012), p. 1

  6. R.M. Noor, V. Gundeti, A.M. Shkel, in IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (IEEE, 2017), p. 156

  7. H.T. Quan, Z. Song, X.F. Liu et al., Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  8. S. Sachdev, Quantum phase transitions [M] (John Wiley & Sons Ltd., Cambridge, England, 2007)

  9. J. Zhang, X. Peng, N. Rajendran et al., Phys. Rev. Lett. 100, 100501 (2008)

    Article  ADS  Google Scholar 

  10. J. Zhang, F.M. Cucchietti, C.M. Chandrashekar et al., Phys. Rev. A 79, 012305 (2009)

    Article  ADS  Google Scholar 

  11. V. Jacques, P. Neumann, J. Beck et al., Phys. Rev. Lett. 102, 057403 (2009)

    Article  ADS  Google Scholar 

  12. A. Batalov, V. Jacques, F. Kaiser et al., Phys. Rev. Lett. 102, 195506 (2009)

    Article  ADS  Google Scholar 

  13. P. Pfeuty, Phys. Lett. A 72, 245 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  14. W. Liang, V.S. Ilchenko, A.A. Savchenkov et al., Optica 4, 114 (2017)

    Article  Google Scholar 

  15. T. Müller, M. Gilowski, M. Zaiser et al., Eur. Phys. J. D 53, 273 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Pu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YH., Sun, CP. Quantum sensing of rotation velocity based on transverse field Ising model. Eur. Phys. J. D 71, 249 (2017). https://doi.org/10.1140/epjd/e2017-80247-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80247-x

Keywords

Navigation