Skip to main content
Log in

Superfluid critical velocity of spin-orbit coupled Bose-Einstein condensates

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We find that for a point-like impurity moving in an isotropic Rashba or Weyl spin-orbit coupled Bose-Einstein condensate with a plane-wave order, the superfluid critical velocity is zero if its direction is not perpendicular to a special one along which the dispersion relation of excitations is quadratic. The superfluid critical velocity can only be finite in the perpendicular directions. The dimensionality of superfluidity is lower than that of the physical system. The spin-orbit coupling plays a key role in this phenomenon, which macroscopically enhances the degeneracy of the ground state of free gas, and resulting in softer Goldstone modes when bosons condense. The anisotropy of the superfluid critical velocity is an effect of breaking the rotational symmetry of the system due to a finite canonical condensed momentum. In the Weyl SOC case, spin-dependence of particle-particle interactions also leads to anisotropic dynamics, in which the spin-orbit coupling plays a crucial role.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.N. Bose, Z. Phys. 26, 178 (1924)

    Article  ADS  Google Scholar 

  2. A. Einstein, Sitzungsber. Kgl. Preuss, Akad. Wiss. 1924, 261 (1924)

    Google Scholar 

  3. A. Einstein, Sitzungsber. Kgl. Preuss, Akad. Wiss. 1925, 3 (1925)

    Google Scholar 

  4. F. London, Nature (London) 141, 643 (1938)

    Article  ADS  Google Scholar 

  5. P. Sokol, 1995, in Bose Einstein Condensation, edited by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, Cambridge), p. 51

  6. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  7. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  8. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  9. Y.J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  10. J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012)

    Article  ADS  Google Scholar 

  11. P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109, 095301 (2012)

    Article  ADS  Google Scholar 

  12. L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012)

    Article  ADS  Google Scholar 

  13. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  14. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  15. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2010)

    Article  ADS  Google Scholar 

  16. A. Oosawa, M. Ishii, H. Tanaka, J. Phys.: Condens. Matter 11, 265 (1999)

    ADS  Google Scholar 

  17. T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000)

    Article  ADS  Google Scholar 

  18. V. Zapf, M. Jaime, C.D. Batista, Rev. Mod. Phys. 86, 563 (2014)

    Article  ADS  Google Scholar 

  19. E.M. Lifshitz, L.P. Pitaevskii, Landau and Lifshitz Course of Theoretical Physics: Statistical Physics (Butterworth-Heinemann, Oxford, 1980), Pt. 2

  20. R.P. Feynman, in Progress in Low Temperature Physics, edited by C.J. Gorter (North Holland, Amsterdam, 1955), Vol. 1, Chap. II, pp. 17–53

  21. G.E. Astrakharchik, L.P. Pitaevskii, Phys. Rev. A 70, 013608 (2004)

    Article  ADS  Google Scholar 

  22. Y.J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  23. J.Y. Zhang, S.C. Ji, Z. Chen, L. Zhang, Z.D. Du, B. Yan, G.S. Pan, B. Zhao, Y.J. Deng, H. Zhai, S. Chen, J.W. Pan, Phys. Rev. Lett. 109, 115301 (2012)

    Article  ADS  Google Scholar 

  24. P. Wang, Z.Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109, 095301 (2012)

    Article  ADS  Google Scholar 

  25. L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012)

    Article  ADS  Google Scholar 

  26. L. Huang, Z. Meng, P. Wang et al., Nat. Phys. 12, 540 (2016)

    Article  Google Scholar 

  27. Z. Wu, L. Zhang, W. Sun, X.R. Xu, B.Z. Wang, S.C. Ji, Y. Deng, S. Chen, X.J. Liu, J.W. Pan, arXiv:1511.08170

  28. H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012)

    Article  ADS  Google Scholar 

  29. X. Zhou, Y. Li, Z. Cai, C. Wu, J. Phys. B: A. Mol. Opt. Phys. 46, 134001 (2013)

    Article  ADS  Google Scholar 

  30. N. Goldman, I.B. Spielman, Rep. Prog. Phys. 77, 126401 (2014)

    Article  ADS  Google Scholar 

  31. H. Zhai, Rep. Prog. Phys. 78, 026001 (2015)

    Article  ADS  Google Scholar 

  32. Q. Zhu, C. Zhang, B. Wu, Eur. Phys. Lett. 100, 50003 (2012)

    Article  ADS  Google Scholar 

  33. P.S. He, Y.H. Zhu, W.M. Liu, Phys. Rev. A 89, 053615 (2014)

    Article  ADS  Google Scholar 

  34. P.S. He, R. Liao, W.M. Liu, Phys. Rev. A 86, 043632 (2012)

    Article  ADS  Google Scholar 

  35. E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960)

    Google Scholar 

  36. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  37. C. Wang, C. Gao, C.M. Jian, H. Zhai, Phys. Rev. Lett. 105, 160403 (2010)

    Article  ADS  Google Scholar 

  38. C.J. Wu, I. Mondragon-Shem, X.F. Zhou, Chin. Phys. Lett. 28, 097102 (2011)

    Article  ADS  Google Scholar 

  39. B.M. Anderson, G. Juzeliūnas, V.M. Galitski, I.B. Spielman, Phys. Rev. Lett. 108, 235301 (2012)

    Article  ADS  Google Scholar 

  40. R. Barnett, G.R. Boyd, V. Galitski, Phys. Rev. Lett. 109, 235308 (2012)

    Article  ADS  Google Scholar 

  41. N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, Berlin, 1999)

  42. R. Barnett, S. Powell, T. Gra, M. Lewenstein, S. Das Sarma, Phys. Rev. A 85, 023615 (2012)

    Article  ADS  Google Scholar 

  43. R. Liao, O. Fialko, J. Brand, U. Zülicke, Phys. Rev. A 92, 043633 (2015)

    Article  ADS  Google Scholar 

  44. P.S. He, W.L. You, W.M. Liu, Phys. Rev. A 87, 063603 (2013)

    Article  ADS  Google Scholar 

  45. T. Ozawa, G. Baym, Phys. Rev. Lett. 109, 025301 (2012)

    Article  ADS  Google Scholar 

  46. H. Shi, A. Griffin, Phys. Rep. 304, 1 (1998)

    Article  ADS  Google Scholar 

  47. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Song He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JH., He, PS. Superfluid critical velocity of spin-orbit coupled Bose-Einstein condensates. Eur. Phys. J. D 71, 244 (2017). https://doi.org/10.1140/epjd/e2017-80209-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80209-4

Keywords

Navigation