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Abstract. We have subjected the planar pendulum eigenproblem to a symmetry analysis with the goal of
explaining the relationship between its conditional quasi-exact solvability (C-QES) and the topology of its
eigenenergy surfaces, established in our earlier work [Front. Phys. Chem. Chem. Phys. 2, 1 (2014)]. The
present analysis revealed that this relationship can be traced to the structure of the tridiagonal matrices
representing the symmetry-adapted pendular Hamiltonian, as well as enabled us to identify many more — 40
in total to be exact — analytic solutions. Furthermore, an analogous analysis of the hyperbolic counterpart
of the planar pendulum, the Razavy problem, which was shown to be also C-QES [Am. J. Phys. 48, 285
(1980)], confirmed that it is anti-isospectral with the pendular eigenproblem. Of key importance for both
eigenproblems proved to be the topological index , as it determines the loci of the intersections (genuine
and avoided) of the eigenenergy surfaces spanned by the dimensionless interaction parameters n and (.
It also encapsulates the conditions under which analytic solutions to the two eigenproblems obtain and
provides the number of analytic solutions. At a given x, the anti-isospectrality occurs for single states
only (i.e., not for doublets), like C-QES holds solely for integer values of x, and only occurs for the lowest
eigenvalues of the pendular and Razavy Hamiltonians, with the order of the eigenvalues reversed for the
latter. For all other states, the pendular and Razavy spectra become in fact qualitatively different, as

higher pendular states appear as doublets whereas all higher Razavy states are singlets.

1 Introduction

Like the harmonic oscillator, the planar pendulum is key
to the understanding of a number of prototypical one-
dimensional problems in chemistry and physics, partly
listed in Table 1. However, unlike the harmonic oscilla-
tor problem, the planar pendulum one is not analytically
(or exactly) solvable, i.e., its Schrédinger equation does
not possess algebraic solutions that cover the entire spec-
trum of the problem’s Hamiltonian. Instead, the problem
is only conditionally quasi-exactly solvable [1,2], i.e., its
algebraic solutions only exist for finitely many eigenval-
ues of the pendular Hamiltonian (quasi-exact solvabil-
ity, QES), and, moreover, only obtain if the problem’s
interaction parameters satisfy a particular set of condi-
tions (conditional quasi-exact solvability, C-QES). Previ-
ous work [3] has identified some analytic solutions and
conditions for a planar pendulum whose potential is com-
prised of a trigonometric expansion up to second order,
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sometimes referred to as the square planar pendulum [4].
Below, by planar pendulum we always mean the square
planar pendulum.’

Herein we seek to extend the batch of the analytic so-
lutions of the planar pendulum problem by making use
of the connection, recognized in our previous work [3],
between the topology of the eigenenergy surfaces and
the conditional quasi-solvability, as well as of the sym-
metry of the problem and the properties of its anti-
isospectral [19,35] counterpart. Thereby we identify a
range of analytic wavefunctions endowed with a clear
physical meaning and pertaining to both periodic and ape-
riodic single- as well as multiple-well potentials.

We start by invoking the analytic solutions of the pla-
nar pendulum problem found earlier via supersymmet-
ric quantum mechanics (SUSY QM [36]) and reported in
reference [3]. There it is shown how transformations be-
tween pairs of (almost) isospectral Hamiltonians can be
used to construct analytic solutions for Schrédinger equa-
tions, which are otherwise hard to find. In our present
work these solutions are classified into four categories,

! We note that the analytic asymptotic states that the planar
pendulum possesses are exempt from our considerations here
as these are eigenstates of a different Hamiltonian.
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Table 1. Examples of problems and applications in chemistry and physics where the pendular trigonometric potential, equa-
tion (2), and the Razavy hyperbolic potential, equation (5), make a prominent appearance.

Pendular trigonometric potential

Problems and applications Reference
Internal rotation, molecular torsion [5-10]
Molecular alignment/orientation [14,15]

Molecules in combined fields (3]

Band structure of condensed matter systems [16,17,22]
Nonlinear dynamics [24,25]
Solitons [28,29]
Josephson Junction Rhombus (32]
Optical lattice [34]

each of them associated with one of the four irreducible
representations of the Cy, point group. For each of the
irreducible representations, the Hamiltonian of the pla-
nar pendulum is found to be an infinite tridiagonal ma-
trix containing a finite-dimensional block characterised by
a particular condition imposed on the pendulum’s pa-
rameters and expressed in terms of an integer, termed
the topological index. The value of the topological in-
dex is related to the dimension of the finite block
and provides the number of analytic solutions. Apart
from the trigonometric potential of the planar pen-
dulum, we also investigate its hyperbolic counterpart,
known as the Razavy potential [37], which obtains via
an anti-isospectral transformation of the pendular poten-
tial. The Razavy potential? is related to the symmet-
ric double Morse potential. Its applications are listed in
Table 1.

Like in the pendular case, the Razavy Hamiltonian be-
comes tridiagonal in the irreducible representations of its
symmetry group. However, its symmetry is that of the C;
point group, yielding just two irreducible representations.
As shown below, the intersections of the trigonometric
(pendular) and hyperbolic (Razavy) spectra as functions
of the interaction parameters yield analytic eigenenergies
corresponding to the analytic solutions. This is in agree-
ment with the properties of the energy levels of the spin
system formulations of both the planar pendulum and the
Razavy Hamiltonians [12,17,18,21,38]. In either case, we
obtain the conditions for quasi-analytic solvability (QES)
as a trivial consequence of our approach, independent of
previous algebraic work, see e.g., references [17,18,39-42].

Finally, we take advantage of the spectral proper-
ties of the Schrddinger equation of the planar pendu-
lum, which corresponds to a periodic Sturm-Liouville
differential equation known as the Whittaker-Hill equa-
tion [10,16,17,38,42,43], as well as of the properties of its
anti-isospectral transform to gain an insight into the eigen-
properties of both the planar pendulum and Razavy sys-
tems. What we found is that outside the range of C-QES,
the higher states are all doublets (pendulum) or singlets
(Razavy system).

2 Also known as the double sinh-Gordon (DSGH) potential.

Razavy hyperbolic potential

Problems and applications Reference
Uniaxial paramagnets or single-molecule magnets — [11-13]
Quasi-exactly solvable double well potential [16-18]
Quantum field theory [19-21]

PT-symmetry [23]

Nonlinear coherent structures [26,27]
Quantum theory of instantons [29-31]

Model of a proton in a hydrogen bond [17,21,33]

This paper is organised as follows: in Section 2, we re-
view the general properties of the planar pendulum as well
as the Razavy Hamiltonians. In Section 3, the conditions
for quasi-analytic solvability are studied for either of the
two potentials, with a particular attention to their sym-
metry; at the same time, we investigate the analytic solu-
tions of the Schrodinger equation for both Hamiltonians
and their mutual relationship. A brief survey of the nu-
merical solutions of the Schrodinger equation for the two
systems is given in Section 4. Finally, Section 5 provides
a summary of the present work.

2 Properties of the Hamiltonians

In this section we describe the properties of the planar
pendulum and Razavy Hamiltonians whose respective po-
tentials are related via an anti-isospectral transformation.

2.1 Planar pendulum

We consider the Hamiltonian of the planar quantum pen-
dulum to be of the form

d2
- de?
where all energies are expressed in units of the rotational

constant B = h%/(2I) with I being the moment of inertia.
The periodic potential

H; = + Vi (0) (1)

Vi(0) = —ncosf — Ccos? 0 (2)

is a trigonometric series (hence the subscript t) up to sec-
ond order for angle 6 € (0,27) whose Fourier terms are
weighted by the (real) dimensionless parameters n and (.
For n = ¢ = 0, Hamiltonian (1) becomes that of a free
rotor or a particle on a ring. Throughout this work we
consider ¢ > 0; we note that the structure of the solutions
is qualitatively different for negative values of ¢ [10]. For a
discussion of positive and negative values of 7, see below.
The Schrodinger equation

_ d2(0)

a2 [ncosf + ¢ cos? 0] ¥ (0) = Eype(0)  (3)
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reduces for either n = 0 or ( = 0 to a Mathieu equa-
tion [3,14,15]. We note that Mathieu equations do not
have analytic solutions but possess many analytic prop-
erties [44]. The pendular potential (2) is 2w-periodic and
for 6 € (0,27) assumes a shape that depends in the fol-
lowing way on the relative magnitude of |n| and 2¢:

e For |n| < 2¢ and n < 0, V; consists of an asymmet-
ric double well with a global minimum of (n — () at
Omin,g = T, a local minimum of (=7 —¢) at 0,41 = 0,
and global maxima of Zz at 0,00 = arccos [— 2"(},

27 — arccos [— 2"{}, see Figure 1. For n > 0, the po-

tential consists of an asymmetric double well with a
local minimum of (n — ¢) at Oy, = 7, global minima

of —=(n+¢) at Opmin,g = 0,27, and global maxima of Zz

at 0,00 = arccos {—2"(}, 2T — arccos {—2"(}

e For || > 2¢ and n < 0, V; is a single well with a
minimum of (n — ¢) at 0, = 7 and a maximum of
(=n—¢) at Omae = 0,27, see Figure 1. Forn > 0, Vi is a
single well with a minimum of —(n+(¢) at 6,,:, = 0, 27
and a maximum of (n — () at 0,4, = 7. We note that
for |n| = 2¢, the maxima become flat, as a result of

which the first three derivatives vanish at 0,,42.

As can be gleaned from Figure 1, potential (2) is invari-
ant under the transformations 6 — 6 + 27 and 6 — —6.
As a consequence, the planar pendulum possesses a sym-
metry isomorphic with that of the point group Cs, (with
0 — 0+ 2w and 0 — —@ corresponding, respectively, to
rotation and inversion). Below we exploit this symmetry
by making use of its irreducible representations to sim-
plify the Hamiltonian matrix. Apart from considering 27-
periodic wavefunctions on the 6 € (0, 27) interval, we also
consider 4m-periodic wavefunctions on the 6 € (—2m,27)
interval that are 2m-antiperiodic and thus are not solu-
tions of the pendular eigenproblem, equation (3). We in-
clude these wavefunctions nevertheless as they may prove
useful for tackling problems involving Berry’s geometric
phase [45]3.

2.2 Razavy system

The quasi-exactly solvable Schriodinger equation for
a symmetric double-well potential introduced by
Razavy [31,37] can be recast in the form

_ dzwh (LC)

dx?

where z is a linear coordinate, € (—o00, 00). The eigen-
values Fj and eigenfunctions v, of equation (4) are la-
beled with the subscript h to indicate that they pertain
to Razavy’s hyperbolic potential,

+ (ncoshz + ¢ cosh? z) Yy (z) = Epon(z) (4)

Vi(z) = ncoshz 4 ¢ cosh® . (5)

3 We note that a mapping 6 — g would make the A(B)
solutions periodic (anti-periodic) in 7, see below. This could
be of interest in treatments of, e.g. (circular) motion of an

atom around a hetero-nuclear diatomic.
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Fig. 1. Planar pendulum (trigonometric) potential, equa-
tion (2), for ¢ = 25 and n = —30 (full curve), n = —50 (dashed
curve), and n = —70 (dotted curve). Note that the potential is
a double well for |n| < |2¢| and a single well for |n| > |2¢|.
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Fig. 2. Razavy (hyperbolic) potential (5) for ( = 25 and n =
—70 (dotted curve), n = —50 (dashed), and n = —30 (full).
The potential is a double well for |n| > |2¢| and a single well
for |n] < ]2¢].

We note that the eigenproblems for the planar pendulum,
equation (1), and the Razavy system, equation (4), are
related by the anti-isospectral transformation (AIS) that
maps

0 — ix
Et = —Eh.
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However, the planar pendulum and the Razavy systems
are anti-isospectral only over a finite range of their spectra
FE; and Ey, as will be described in detail below.

The Razavy potential (5), see Figure 2, exhibits min-
ima only for ¢ > 0. Their general shape depends on the
parameters 17 and ¢ in the following way:

e For n < 0 and |n| > 2¢, V}, is a symmetric double well

whose minima of — - occur at # = “arccosh(— ;. ) and

its local maximum of (n+ ¢) at x = 0. For < 0 and

[n| < 2¢, V}, a single well potential with a minimum of
(n+¢) at z =0.

e Forn > 0, V), is asingle well (irrespective of the relative

magnitude of n and ¢) with a minimum of (n + ¢) at

x = 0. If, in addition, |n| = 2¢, the well has a flat

bottom with the first three derivatives vanishing at

the minimum.

For |n| > ¢, the Razavy potential approaches the shape
of a double-Morse potential with a flat barrier [21]. Using
arccosh(y) = In(y+ \/y2 — 1), the separation of the Morse
wells is given by 21n(—n/().

We note that the Razavy potential (5) is only invari-
ant under the parity transformation x — —z (as well as
under the transformation z +— x 4 2im) and thus has the
symmetry of the point group C;, which is a subgroup of
C5,. This fact will help us to elucidate the connections
between the planar pendulum and Razavy systems.

In order to bring into play the Razavy potential as
a double-well potential, we need to consider n < 0 (and
¢ > 0, as before). Under such conditions, however, when-
ever the Razavy potential is a (symmetric) double-well
potential, namely for |n| > 2(, the pendular potential is
a single-well potential. And conversely, under the same
conditions, whenever the Razavy potential is a single-well
potential, namely for |n| < 2¢, the pendular potential is
an (asymmetric) double well potential.

3 Conditional quasi-exact solvability

In this section we investigate the symmetries of the so-
lution spaces of the planar pendulum and Razavy sys-
tems and relate them to the conditions of quasi-analytic
solvability.

3.1 Symmetries and seed functions

We map the symmetry operations of the Cj, point
group [46] onto those of the planar pendulum (trigono-
metric) system in the following way:

E— E = R(4m)
Cy — R(27)
oy(xz) — P =0)
oy(yz) — P = m) (7)

with E is the identity operation, R(«}) is the rotation by
angle ¥ and P(4) is the parity operation, § — 9 — —0 — ¥,
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Table 2. Character tables for the irreducible representations
of the planar pendulum (trigonometric, Cs,) and Razavy (hy-
perbolic, C;) systems. The symmetry operations are defined by
equations (7) and (8).

Pendulum Razavy system
I, E R@2r) PO P@x) I, E P
Ay 1 1 1 1 ,
Bi 1 -1 1 -1 A ! !
B 1 -1 -1 1 "
Ay 1 1 -1 g A Lo

with ¢ is the origin and o stands for reflection from a
plane. As we are interested in both 27-periodic and anti-
periodic wavefunctions, the angle 6 is considered to be in
the (—2m, 27) domain.

For the Razavy (hyperbolic) system, the mapping of
the C; point group is

F—F
i— P (8)

where F is the identity and P is the parity operation,
x — —x. Table 2 provides a summary of the characters
of the irreducible representations I'; and I}, for both the
planar pendulum and Razavy systems. Indeed, the ana-
lytic solutions found so far, see references [3,37], for the
lowest states of the two systems exhibit, respectively, the
presumed Co, and C; symmetries. The eigenenergies and
wavefunctions of these states are listed in Table 3 along
with their symmetry labels I; or I'};. The corresponding
wavefunctions are also shown in Figure 3, whose inspec-
tion allows to verify at once the assignment of the sym-
metry labels.

The C; point group is a subgroup of Csy,, whose irre-
ducible representations Ay, By and Ay, Bs correlate, re-
spectively, with the irreducible representation A’ and A"
of C;. The parity operation P, equation (7), applied to
the hyperbolic system plays the role of the P(0) opera-
tion, equation (8), applied to the trigonometric system.

As an aside, we note that the totally symmetric
trigonometric wavefunction, §f{1’ x exp(fcosf), see Ta-
ble 3 and Figure 3, has the form of the von Mises distri-
bution [47], which is the circular analog of a normal dis-
tribution (or a Gaussian wavepacket). Although the latter
is omnipresent in quantum mechanics textbooks, the for-
mer is hardly mentioned in the literature at all as a solu-
tion of Schrodinger’s equation (3). The same can be said
about the hyperbolic analog of the von Mises distribution,
w}(fl) o exp(/3 cosh ), which is a solution of equation (4).
The lack of attention to these as well as all the other an-
alytic solutions listed in Table 3 and shown in Figure 3
may be due to the fact that these solutions only obtain
for certain integer values of

_ ol _ Inl
RV/ e ®)

where 3 is a short-hand for 4+/¢. Hence n = k3 and
¢ = B2. A given value of x defines a particular condition
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Fig. 3. Seed wavefunctions listed in Table 3, with 3 = —5 for both the planar pendulum trigonometric system (left) and the
Razavy hyperbolic system (right). Note that the color coding introduced here is used throughout the paper.

Table 3. Analytic eigenenergies and wavefunctions of the four lowest states of the pendulum (trigonometric) and Razavy
(hyperbolic) systems as identified in references [3,37], respectively. We note that in Razavy’s original work [37] an integer n is

2
used such that Kk = n + 1 and interaction parameter £ such that ¢ = §6 = g%

I Et(ﬁ) t(l;’)(G) x
1 Al 7/82 eﬁcosQ

2 B —-B*-8+ }1 cosgeﬁcose
2  Bs fﬂ2+ﬂ+ }1 singeﬁcose
3 A 7B2 +1 sin Pe? <o

for the quasi-exact solvability of either the planar pendu-
lum or Razavy problems which, therefore, belong to the
class of conditionally quasi-exactly solvable systems. As
expanded upon below, the (integer) value of the index
k also serves to specify the number of analytic solutions
obtainable. For more details, see Section 3. At the same
time, as described in references [3,48], the index x charac-
terises the structure/topology of the pendulum’s eigenen-
ergy surfaces, which is why it was termed in reference [48]
the topological index.

Table 3 also reveals that the analytic eigenvalues of
the planar pendulum and Razavy problems exhibit anti-
isospectrality as well as a correspondence between the
eigenfunctions pertaining to a given eigenvalue and its
counterpart upon replacing cos +— cosh (or sin + sinh).
Below, we show that these correspondences remain in
place for all analytic solutions for the two potentials in
question. This is a manifestation of the “duality prop-
erty”, which entails that quasi-exactly solvable problems
arise in pairs of different forms whose analytic eigenener-
gies coincide, up to a change of sign [35].

(I'n)

I
kDo B e (@) ox
1 A/ BQ eﬁ cosh z
2 A// 62 _ B _ 411 sinh ;eﬁ cosh z

Below we make use of the analytic wavefunctions listed
in Table 3 and shown in Figure 3 as seed functions that
allow us to find, in principle, arbitrarily many additional
analytic solutions.

3.2 Planar pendulum

By making use of equation (9) and the substitution

he(0) = fu(9) exp(6 cos 0)

the original Schrédinger equation (3) for the planar pen-
dulum becomes

_&£(0)
d6?

(10)

df(6)
do
— [62 + B(k — 1) cosb] fi(0) = E¢ fi(6) (11)

which is the equation of Ince [49]. Each of its four non-
trivial periodic solutions [43] corresponds to one of the

+ 20sin6
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symmetries of the planar pendulum: even and 27-periodic
solution corresponds to the A; symmetry; odd and 27-
periodic solution to As, even and 27-antiperiodic solution
to Bi, and odd and 27 anti-periodic solution to Bs, see
also [10,16,42].

With the further substitution

= 12
u=cos, (12)
the Ince equation (11) can be written as
_ 1 N ddr s
Tt,m¢t,m = 4(1 —u ) du2 (Qﬁu ﬁ 4> du
+(2u” =)k = 1B+ 5?) dew
- _Et,n¢t,n (13)

where T ,, is the negative of the Schrédinger operator of
the planar pendulum that depends parametrically on the
topological index k and ¢, (u) is equivalent to f:() for a
given value of k. The last substitution has served to elim-
inate all trigonometric functions; as a result, from here on
we only have to deal with polynomials in the new argu-
ment u. The two transformations (10) and (12) can now
also be applied to the four trigonometric seed functions
given in the left part of Table 3 (and shown in Fig. 3),
yielding the following expressions:

(14)

These lowest-order eigenfunctions that transform accord-
ing to the irreducible representations of the Cs, point
group can be used to symmetry-adapt the Schrédinger op-
erator T} ,,, equation (13), to the symmetry of the planar
pendulum via the following gauge transformation:

(I't) —
t,k —

t /{QS(B) (15)

t/{

with Iy € {41, B, Ba, A2} and k € {1,2,2,3} as given in
equation (14). Note that the structure of the Lie algebras
(from which the symmetry-adapted operators could have
been constructed as well) is left invariant by this gauge
transformation, as is the spectrum [50,51].

In order to obtain explicit matrix representations of

the Tt(f;‘) operators, we make use of a basis set of mono-

mials in u
{1,0%ut,. .} (16)

comprised of even-order powers only. These are totally
symmetric (pertaining to the A; irreducible representa-
tion) with respect to the symmetry operations of the pla-

nar pendulum as given by equation (7) and listed in Ta-

ble 2 and thus not affecting the symmetry of the Tt(f;t)

operators.

Eur. Phys. J. D (2017) 71: 149

In the basis set (16), the four symmetry-adapted
Schrédinger operators of equation (15) are represented by
tridiagonal matrices with the following superdiagonal ma-
trix elements:

(u?= 2|T(A1)|u24> =2 —0/2
(@ T [y = 2 4 0)2
<u2e—2|T(Bz)| 20y = (2 _¢/2
(W 2TE [y = 02 1 42 (17)

for natural numbers £. The superdiagonals are always non-
negative for £ > 0. The diagonal elements are given by

(W | T [u?t) = 67 — 02 + 450 — (s — 1)

(| T 7 ) = 52— —6—1/4+4ﬂ€—(f<a—3)5

(W T [y = % — 2 — 0= 1/4+ 450 — (s — 1)3

(W | T2 [y = ﬁ?- — 20— 14480 — (k—3)8
(18)

with integer ¢ > 0. The subdiagonal elements are
1
<u2€|Tt(f:1)|u2€_2> — 4ﬁ (_e + I€—2|— )

e
48 (—e n ';”)

k—1
)
with integer ¢ > 0.

Thus, by virtue of the substitutions (10) and (12), to-
gether with the gauge transformation (15), we have re-
duced the original Schrédinger equation (3) to four inde-
pendent tridiagonal matrices.

When diagonalizing any of the four matrices with ele-
ments given by equations (17)—(19), each of which pertains
to one of the four irreducible representations, we make use
of the special properties of tridiagonal matrices, see e.g.,
references [52,53]. In particular, a tridiagonal matrix of
dimension M,

(W T %) =

<U2£|Tt(§2) |u2£72> _

(W T %) = 4 (—e + (19)

ag by 0 ... 0
ci a; bo O
D=110 ¢y a9 " ; (20)
bar—1
0 ... CM—1 QM —1

cannot be broken into block matrices if both b; # 0 and
¢; # 0. However, if there is an N for which by = 0 or
cy = 0, the matrix D can be broken into two tridiagonal
matrices: a matrix, Dy, of dimension NV x N, and another
matrix, Do, of size (M — N) x (M — N), with

o(D) = o(D1) Uo(Ds) (21)
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where o(D) is the spectrum (set of eigenvalues) of
matrix D.

For example, when ¢, = 0, we are left with the follow-
ing block structure:

apg by 0 ... 0
cia; by O :
D=0 0a . , (22)
; bar—1
0 ... CM—1 AN —1

indicated by the vertical and horizontal lines, in which
case the eigenproperties can be calculated separately for
the upper left 2 x 2 and for the lower right (M — 2) x
(M — 2) blocks. However, in the case of the tridiagonal
matrices (17)—(19) representing the symmetry-adapted
Schrodinger operator Tt(ﬁl,;t), the vanishing ¢y = 0 implies
that only the upper left NV x N block can be diagonalised
explicitly. Note that this is independent of the value of by .
The lower right block which is of infinite dimension can
be also diagonalized but cannot be computed explicitly.
Indeed, the subdiagonal elements given by equa-
tion (19) contain a single zero for each of the four

symmetry-adapted matrices Tt(,l;t) for positive integer val-
ues of the topological index x. For odd values of &, the

zeros of Tt(}’:l) occur at £ = (k+1)/2 and at £ = (k—1)/2
for Tt(”:Q) (however for x > 3 only). As a result, the eigen-

properties of Tt(fl) and T, t(;b) can be obtained analytically
for the upper left blocks whose dimensions are

A k+1
N -
A k—1
=" (23)
For even values of k, the zeros occur at ¢ = r/2 for

both Tt(,fl) and Tt(,EZ) and the dimensions of the upper
left blocks are
K
Nt(,fl) =,
N =1 (24)
None of the four finite-dimensional (upper left) blocks can
be broken into smaller blocks, as their sub- and super-
diagonal elements are all nonzero (in fact, positive). The
infinite-dimensional (lower right) blocks cannot be broken
into smaller blocks for the same reason (all superdiag-
onal entries are positive whereas all subdiagonal entries
are negative). Examples of the finite-dimensional matri-
ces are presented in Section 3.4 and used for calculating
the eigenproperties of the quantum planar pendulum.
The above provides a compelling explanation for the
previously found conditionally quasi-exact solvability (C-
QES) of the planar pendulum problem: if and only if x is
an odd/even positive integer can the tridiagonal matrices,
equations (17)-(19), corresponding to the A; o/B o irre-
ducible representations, be broken into finite-dimensional
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matrices (upper left) and infinite-dimensional remainders
(lower right), whereby the finite-dimensional matrices can
be diagonalized, at least in principal, analytically, with
solutions that are periodic/antiperiodic in 27.

Note that for x non-integer, there will be no zeros
on the sub- or super-diagonals of the matrices (17)—(19),
which will thus be of infinite dimension and, therefore, not
amenable to analytic diagonalization.

The finite dimensions of the upper left block matri-
ces, equations (23) and (24) for odd and even &, respec-
tively, determine the number of analytic solutions of the

Schrédinger equation (3). Since Nt(ﬁl) + N — for odd

t,K

K and Nt(ﬁl) + N;EQ) = k for even &, we see that the num-
ber of analytic solutions is in any case equal to the topo-
logical index k itself. Thus, for a given «, a finite number
of analytic solutions is obtained and, therefore, the pla-
nar pendulum problem is QES. We note that in practice
the number of analytic eigenvalues and eigenfunctions is
limited to Nt(’l;‘) < 4. For more, see also Section 3.4.

Ultimately, our method starting from the identifica-
tion of the four finite irreducible representations I} €
{44, By, By, A3} of Hamiltonian (3) is equivalent to build-
ing four Ng;")—dimensional monomial subspaces each of
which is invariant under the action of the corresponding
symmetry-adapted operator Tt(AI,;t), see equation (15). This
circumstance suggests that our method is related to Lie
algebraic methods, see, e.g., references [38,41]. We note
that for x non-integer, there are no invariant subspaces,
in which case the infinite tridiagonal matrices cannot be
reduced. However, they can be diagonalised numerically.

3.3 Razavy potential

In analogy with the procedure introduced in Section 3.2
for the planar pendulum, we make use of the substitution

¥n(0) = fn(0) exp(5 cosh0) (25)
for § < 0, which ensures a correct asymptotic behavior.
This substitution serves to recast the original Schrodinger
equation (4) for the Razavy system as

@ fu(2)

o dfp(2)
2 — 2@3sinh x dr

+ (8% + B(k — 1) coshz] fu(z) = Epfa(z) (26)

which is a hyperbolic analog of the Ince equation (11);
we note that equation (26) can be obtained directly from
equation (11) by an anti-isospectral transform: x +— —if),
fu(z) — fi(0), and Ep = —Ey.

With the further substitution

u = cosh ;U (27)
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the hyperbolic Ince equation (26) can be written as

+ [(2u® - 1)( - 1)+ 52] Dhr
= Eh,m¢h,m- (28)

Here T}, ,; is the Schrodinger operator for the Razavy sys-
tem and ¢p, . (u) is equivalent to fi(z) for a given value
of k. Note that by virtue of the last substitution, all hy-
perbolic functions have been eliminated. Applying trans-
formations (25) and (27) to the two hyperbolic seed func-
tions, cf. Table 3 and Figure 3, yields

A/
() =1
() = £v/u? — 1 (29)

which are identical with the expressions (14) for the seed

functions w( Y and w (B2) of the pendular system. This
identity results from the correlation between the four ir-
reducible representations I} of the Cy, group with the
two irreducible representations I}, of its C; subgroup, cf.
Table 3 and Figure 3. Again, these lowest-order eigenfunc-
tions that transform according to the irreducible represen-
tations of the C; point group can be used to symmetry-
adapt the Schrodinger operator T}, ., see equation (28),
to the symmetry of the Razavy system via the following
gauge transformation:

() — 1
hv"h (I'n) Th.r
h,k

o) (30)

where I, € {4, A"} with k € {1,2}. Like in the trigono-
metric case, the symmetry-adapted Schrodinger operators
T}EF’L) in the hyperbolic case has the same spectrum as the
original operator of T}, ,; [50,51].

In order to obtain explicit matrix representations of
the T}gf;h') operators, we make use of a basis set of mono-

mials in u
{1,u,u2,...}.

In contrast to the trigonometric case, the hyperbolic basis
set is comprised of both even- and odd-order monomials,
as u = cosh(z/2) is totally symmetric (i.e., has even parity
and pertains to the A’ irreducible representation) with
respect to the symmetry operations of the Razavy system
as given by equation (8) and listed in Table 2 and thus

not affecting the symmetry of the T}EJ;) operators.

(31)

Using the basis set of equation (31), the non-zero ma-
trix elements of the symmetry-adapted Schrédinger op-
erators for the Razavy system T}(LQL) can be expressed
in terms of the corresponding operators for the planar

Eur. Phys. J. D (2017) 71: 149

T(Ft)

pendulum 7} ",

< 2€|T(A | 20/

< 2e+1|T(A )| 20/ 41

I

) =
) =
<u2£| (A )| 22’)
) =

< 2€+1|T A” | 2041 (32)

with ¢/ = ¢ for the main diagonal and ¢’ = ¢ & 2 for sub-
and super-diagonals. The first and third identities are true
by definition, because the seed functions for the A’ and
A" irreducible representations of the hyperbolic system
(C;) have been chosen to be identical with the seed func-
tions for the Ay and Bs irreducible representations of the
trigonometric system (Ca,). The second identity reflects
the fact that the A; and B; seed functions of the pendu-

lum differ by one power of u, i.e. (i)(Bl)( )= ugf)(Al)( )=
ud)(A )( ). The same holds for the By and As seed func-

tions, ¢§j‘f’( ) = ud)tB2)( ) = iud)ﬁf’:)(u), which leads to
the fourth identity of equation (32).

Note that all other matrix elements of T}(L K’L), i.e., those
coupling even with odd powers of u, vanish. ThlS is be-
cause of the structure of the Schrodlnger operator Tj, .,
see equation (28). Since T, ., leaves both the space of even-
ordered and odd-ordered monomials invariant, we also end
up with four matrices, in complete analogy to the four
tridiagonal matrices (17)-(19) occurring for the trigono-
metric case, even though the reduced C; symmetry of
the hyperbolic problem allows for a decomposition of the
original Hamiltonian matrix into two blocks only (A" and
A"). Hence, from here on we write T = Tt(}l,:) T}(LI;),
i.e., we drop the subscripts ¢ and h, and use the I' €
{A1, B1, B2, A2} labelling, originally introduced for the
trigonometric system, for the hyperbolic system as well.
The same applies for the dimensions of the corresponding

defined in equations (23) and (24).

In summary, as implied by the equality of the matrix
representations of the respective Schrodinger operators,
equation (32), the hyperbolic Razavy system is, like the
planar pendulum, a C-QES system, i.e., analytic solutions
can only be found under the condition that the topologi-
cal index k be an integer. At the same time, the Razavy
system is also QES, i.e., only a finite number of analytic
solutions exist, and this number is given by the value of k.
Hence, all the analytic eigenenergies (for integer k) of the
planar pendulum are also the eigenenergies of the Razavy
system, however, with an opposite sign as required by the
anti-isospectrality condition (6),

(E;LI;))" - (Et(’l;))zvﬁ‘")—n—l

with quantum numbers 0 < n < N,g,F) — 1 the ordering of
which is reversed within each irreducible representation I".

matrices NN, é,”

(33)
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8= (k=18 : 0
TAD 2(k—1)8 B2_1+4ﬁ—(ﬁ—l)ﬁ 50
N : - ' (h-1)? _ w1
: , . e
0 0 48 32— 0+ (s—1)8
B =1~ (r=3)8 ; 0
(B _ 206-2)B  B-1+48—(s-3)8 35)
; ' . (N—f)z + n22
0 0 48 2 — T 4 (k—1)8
B =i (-1 : 0
(B2 _ 2 —2)B B -4+43—(k—1)B . )
H : : " (n-2)? _ ne2
4 5 4
0 0 48 2 — 07 4 (k- 3)8
B*—1—(k—3)8 3 0
T(A2) _ 20 —3)3  B>—4+48— (k—3)B -
: (n—43>22 L ores
0 0 48 87 = "V 4 (- 3)3

3.4 Sample calculations

In this section, we delve into the details of extracting an-
alytic eigenproperties of the planar pendulum from the
general theory presented above. We begin by writing out
explicitly the finite-dimensional tridiagonal block matrices
representing the symmetry-adapted Schrédinger opera-
tors, equation (15) in the monomial basis (16), whereby we
make use of the matrix elements given by equations (17)—
(19) as well as of the blocks’ dimensions, given by equa-
tions (23) and (24)

See equations (34)-(37) above.

Note again that these matrices are the same for the
trigonometric and hyperbolic system, T,.EF) = Tt(’l,:) = T}EQ
where the four irreducible representations of the former
system are also used for the latter one, see above. As be-
fore, the Aj2/Bj 2 representations pertain, respectively,

D)

to odd/even k. Analytic eigenenergies E;

of the pendu-

lum’s Schrédinger equation (3) and E}(Ll;) of the Razavy
equation (4) are then obtained as the negative or positive
eigenvalues of these four matrices, respectively, see also
the definition of the T}, operator in equation (13), and
Th . operator in equation (28).

Because in general only matrices up to dimension four
can be diagonalised analytically, it follows from equa-
tions (23) and (24) that all A; and Az solutions for x odd
up to kK = 7, as well as four A, solutions for kK = 9 could be
obtained. For x even, all B; and By solutions up to k = 8
could be obtained. This gives a total of 40 analytic solu-
tions which we obtained using computer algebra systems
(both Symbolic Toolbox of Matlab and Mathematica).

The eigenenergies of the 24 lowest states (N,ﬁ” < 3) are

listed in Table 4; the remaining 16 solutions (N,.SF) =4)
are available from the authors upon request. The eigenen-
ergies for the particular choice of 3 = —5 are shown in
bold face in Table 5 for the trigonometric system and
in Table 6 for the Razavy system. An inspection of Ta-
bles 4-6 reveals that the eigenenergies derived from the
different irreducible representations Ay, Ay or By, By for
odd and even k, respectively, are interleaved and form the
spectrum [16].

The analytic eigenfunctions corresponding to the
above analytic eigenenergies can be obtained in analytic
form as products of the gauge factors and polynomials in u

(k—1)/2

( t(,AK,l))n o eBcost Z (U*(’”Al))n,e cos2! Z
(B1) Bcosd 0 "X (B1) 20 0
( b )n xe cos ,, Z (v,{ )n,é cos™
(B2) Bcosb 0 "X (B2) 20 0
(wt,,{ )n xe sin. ) ; (v,{ )n,é cos™
(A2) Beosb gin "X (As) 20 0

( i )n x e sin ez:; (vn )n,é cos™ . (38)

Note that for the eigenfunctions ¢§LF,3 of the Razavy case,
all trigonometric functions should be replaced by their hy-
perbolic counterparts. The leading term is the von Mises
function, exp(/3 cos @), for the trigonometric system, or its
counterpart, exp(f cosh ), for the hyperbolic system. The
second term is a seed function pertaining to one of the
()
K

)

four irreducible representations in question, and (vy ’)n.e
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are the coefficients of the monomials u?*. These coeffi-
cients are the eigenvectors of the matrices T;" ' given in
equations (34)—(37).

3.4.1 The case of N\ =1

According to equations (23) and (24), the value of N =
1 admits the values of Kk = 1,2,3. For kK = 1, only the
A; representation furnishes Né,” = Nl(Al) =1, cf. equa-
tion (23). In this case matrix (34) trivially reduces to its
upper left element which equals the negative of the corre-
sponding A; eigenenergy,

(), = ()~

For k = 2, equation (24) implies that the problem reduces

(39)

to two one-dimensional problems, with NQ(BI) = NQ(B 2) —
1. The corresponding eigenenergies of the By and Bs states
are, respectively, the negative of the upper left elements
of matrices (35) and (36),

1

(FE7), = () = o+
(BE), =~ (s2), = e

For k = 3, only the As representation furnishes Nl(AZ) =1,
cf. equation (23), whose eigenenergy is obtained from the
upper left element of matrix (37)

(55), =~ (), =1

The corresponding eigenvector matrices v,({r) with N, ,ﬁ” =
1 simply reduce to a scalar that can be plugged into
equation (38) to yield the wavefunctions. As can be seen
in Table 3, the four eigenenergies and eigenfunctions for

é,” = 1 reduce to those for the seed functions, cf. Sec-
tion 3.2. Note that these four states were already known
for the pendular case from our previous work, where they
were obtained via supersymmetry (SUSY QM) [3] and for
the hyperbolic case from Razavy’s original work [37]. Note
that for both cases this Ay state is the first excited state
for k = 3.

(41)

3.4.2 The case of N\') =23

In addition to the Ay state for x = 3 mentioned
above, there are also two totally symmetric solutions with

NéAl) = 2. For this case, matrix (34) simplifies to

(A1) _ 62 - 20 é
TS - ( 4ﬁ 62+26_1 ) (42)
whose eigenvalues give the eigenenergies
1 1
BGY) = (BY) = 1632 + 1+ _.
( t3 0/1 h3 )10 b :F2\/ o+ +2

(43)

Eur. Phys. J. D (2017) 71: 149

The corresponding wavefunctions for the trigonometric
case

( t(él)> o efeos? <1i\/16ﬂ2+1_4ﬂ+60529> )
’ 0/1 83 2
(44)
are of even parity and 27-periodic, as required for the to-
tally symmetric A; representation. For the eigenfunctions
;é),l) of the hyperbolic system the cos functions have to
be replaced by their hyperbolic counterpart.
We skip the case of kK = 4 where there are a B; and
a By representations, each of them two-dimensional, and
continue with the case of Kk = 5, In accordance with
equation (23), NéAl) = 3 and NéAZ) = 2. The three-
dimensional A; representation obtained from matrix (34)
yields the following tridiagonal matrix:

pr—4p 0
83 -1 3
0 43 B> +48—4

Al)

i = (45)

and the two-dimensional As representations from ma-
trix (37) yields

(A) _ (B*=28-1 5
T5 _< 4p 52+§ﬁ—4)'

Therefore, we only need to diagonalize these matrices, in-
stead of a 5 x 5 Hamiltonian, which is not possible to do
analytically in general. Analytic expressions for the eigen-
values are listed in Table 4 and the numerical expressions
for the specific choice of 8 = —5 in Tables 5 and 6. We
note that the eigenvalues of the two symmetries are inter-
leaved.

The corresponding wavefunctions can be calculated
from equation (38). For the A; symmetry, we obtain

(46)

(¢§f§1))0 oc e eost®) ((UéAl))o,o + (’UéAl))OJ cos? Z
+(véA1))0,2 cos* Z)

( %1))1 oc e eo? ((UéAl))Lo + (véAl))Ll cos? Z
+ (véAl))l,g cos* Z)

(9637, o 70 (0" 0 + 0

0
+(véA1))2,2 COS4 2>

0
1))271 cos?

(47)
and for the A; symmetry these are
< 0
( t(,A52))0 o sin@eﬁcos(@) ((UéA2))0,O + (UéA2))0,1 cos2 2)

0
( 15,122))1 o sin feP cos(?) <(véA2))1,0 + (UéA2))1,1 cos? 2>
(48)
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Table 4. Analytic energies of the planar pendulum (trigonometric, E:) and the Razavy system (hyper-
bolic, —Fp). Here I} and I, stand for the irreducible representations of the C2, and C; point groups

and o = {/6¢3(—1024ﬁ6 — 6434 — 41232 — 9) + 28832 — 35, by =  {/28832+£363 —80+ 12+, cx =
V/3(—25636 £ 384/3° — 44834 + 43233 — AT73% 4+ 1443 — 36) , d = {/ 12+/3 (25636 — 5923* — 99132 — 225) + 28832 — 143. In

some cases a, b+ are complex numbers but nonetheless imaginary parts of all eigenenergies vanish. Irreducible representations
of seed functions are underlined.

r r
Et(,n) = _Ei(z,ﬁ)

K Ft Fh n
1 A4 A 0 -2
9 B A0 -8 =B+
By A" 0 ~B+ 5+
A A0 -3 = 3\V/16B82 +1+ )
3 A4 A 1 -2+ 11662 + 1+ }
Ay A" 0 B2 +1
B A o0 B —B—\/4B2 +28+1+ 3
, BoA 0% =B+ AP+ 20+ 1+
By A" 0 —B+B— /482 —28+1+ 5
B, A’ 1 —B 4B+ /432 28 +1+ 5
A A0 -3 — ) (a®+488° +13) +
A A1 B2+ L (a® +486% +13) — V3 (—a® +486° +13) + 3
5 A A2 —32 4 L(a® +488% +13) + Y3 (—a® + 4882 +13) + 3
Ay A" 0 -3 — 31682 + 9+ 5
A, AT 1 —B%+ 3/1662 +9+ 3
B A 0 - 3,; (b3 +483% + 248 +28) + %
Bi A1 =B =B+ g (V3 4488 + 248 +28) — 1P (—b1 +486° + 248+ 28) + 3
6 B A2 =B B4 (4857 + 2454 28) + g,{j (—b% +483% + 248 + 28) + 35
By A" 0 —B2+B8— 4 (B2 +483° —243+28) + %
By A" 1 B4+ ) (0 +488% — 248 +28) — Y3 (b2 +486% — 246 + 28) + 33
By A" 2 B4+ ) (0 44887 — 248 +28) + 13 (—b2 +480% — 246 + 28) + 33
Ay A" 0 —B% =} (d® +483% +49) + ]
7T A, A 1 7[32 + 61d (d2 +48[32 +49) _ ig{is (7d2 +48ﬁ2 +49) + 134
A2 AN 2 _62 + 61d(d2 +4862 _|_49) + ig{iS(_dQ +48B2 _|_49) + 134
Table 5. Analytic (bold) and numerical eigenenergies, Et(,l;t), of the pendular (trigonometric) Hamiltonian H:, for 8§ = —5.

Note that energy values of odd (A2 and Bs representations) states are shown in italics. Underlined values indicate degenerate
states (doublets of even and odd states). Numerical values obtained by WAVEPACKET software [54].

k=1 K =2 k=3 k=4 K=D5 k=06
A B A B A B A B A B A B
—25  -25.0000 —29.7500 -29.75 —34.5125 -34.5125 —-39.2857 —39.2857 —44.0681 —44.0681 —48.8587 —48.8587
-15.5601 -19.7500 —19.75 -2 —24.0000 -28.2894 —28.2894 -32.6119 -32.6119 -36.9628 —36.9628

~15:5485 —15.5369 -10.8997 10,8565 —14.4875 —-14.4875 —18.2143 -18.2143 —22.0150 -22.0150 —-25.8760 —25.8760
73631 =7.5512 -10.8118 6.1992 -6.3212  -9.2105 —9.2106 -12.3881 -12.3881 -15.6840 —15.6840
~7.1487 -3.8735 34452 —6.0650 —1.8613 15925 —-3.9169 -3.9161 -6.5154 -6.5153
0.9485 -1.8365 —2.8667 0.3568 -0.3866 —1.2587 2.9565 2.4852  1.4012  1.3968
0.5636  0.9116 93943 1.5817  3.0960 49156 3.6567  6.7965 74914
5.0669 2.6724  4.8582 6.1324 4.0040  6.2819 8.3940 6.7831  8.7353
8.7349  5.9178 99611 9.5751  7.6661 10.6232 11.3059 10.8284 13.0684
13.4317 9.1076  13.6472 14,1848 10.0361 14.7668 15.7486 12.0093 16.7074
18.4942  13.7747 19.1868 14.9465 20.4547 17.0293

18.7515 19.7328 21.4336
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Table 6. Analytic (bold) and numerical eigenenergies, E;(fé‘), of the Razavy (hyperbolic) Hamiltonian Hj, with 8 = —5. Note
that energy values of odd (A” representation) states are shown in italics. The numerical values were obtained with WAVEPACKET

software [54].

k=1 K=2 k=3
25 19.75 14.4875
35.4684 29.75 24
46.8234 40.6891 34.5125
58.9796 52.4654 45.9020
71.8748 65.0075 58.0864
85.4614 78.2621 71.0055
99.7011 92.1867 84.6127
114.5623 106.7472 98.8704
130.0184 121.9146 113.7476
146.0465 137.6644 129.2180
162.6266 153.9756 145.2591

with the requisite eigenvectors given as rows (the num-
bering of which starts from 0) of the following matrices:

1.15537 —2.15340 1
o) — [ 0.02286 ~1.050751 | , ol = (:é'gggi? })
0.00177 —0.14584 1 ’
(49)
for B = —5 as an example. Again, for the eigenfunctions
1/)2’?51), 2?52) of the hyperbolic Razavy system all trigono-

metric functions have to be replaced by their hyperbolic
counterparts.

3.5 Discussion of limiting cases
3.5.1 The case of |3] > /2

As mentioned in Sections 2.1 and 2.2, for the case of
|B] > k/2, or equivalently, |n| < 2¢, the trigonometric
potential is an asymmetric double well, whereas the hy-
perbolic potential has just a single well. This is illustrated
for kK = 5 in Figure 4 where we show the eigenvalues, see
also Tables 5 and 6 and eigenfunctions, see equations (47)
and (48), for the value of 5 = —5. As implied by the
odd value of k, the five analytic states for the trigono-
metric case are 2m-periodic (Aj2). These (single) energy
levels are the lowest A states, and they are located below
the potential’s secondary (local) minimum, see panel A of
Figure 4. The corresponding numerical solutions for 2m-
antiperiodic states (B1,2) are shown in panel B. With the
energy barrier, (|8] + k/2)?, given as the difference be-
tween global minima and maxima, being large, the tunnel
splitting is very small, hardly visible on the scale of the
figure for the example of g = —5.

A comparison with panel C of Figure 4 reveals that
the five analytic A-states are anti-isospectral with the five
lowest states of the Razavy system, which is a single well
for 8 = —5. As noted in Section 3.1, the A; (As) states of
the Cy, group correlate with the A’ (A”) of the C; group.

k=4 K=25 K=06
9.2106 3.9169 —1.3968
18.2143 12.3881 6.5153
28.2894 22.0150 15.6840
39.2857 32.6119 25.8760
51.1079 44.0681 36.9628
63.6885 56.3074 48.8587
76.9758 69.2730 61.5010
90.9291 82.9204 74.8415
105.5147 97.2135 88.8411
120.7047 112.1221 103.4679
136.4749 127.6209 118.6947

Results for k = 6 are shown in Figure 5 where the
six analytic states for the trigonometric case are 2m-
antiperiodic (Bj,2), see panel B of that figure. Again, the
corresponding numerical solutions for 27-periodic states
(A1 2, see panel A) are separated from the B energy levels
by very small tunneling splittings. Because  is an even
integer here, the B states are anti-isospectral with states
of the hyperbolic system (see panel C) where now the By
(Bz2) states of the Cy, group correlate with the A’ (A”) of
the C; group.

It can also be seen in Figures 4 and 5 that the progres-
sions of the analytic eigenenergies are qualitatively similar
to those of a harmonic oscillator. In fact, in the limit of
large || the analytic energies given in Table 4 become
equidistant, with a spacing of 2|3| centered around —32.

3.5.2 The case of |5] < k/2

For the case of |8| < k/2, or equivalently |n| > 2, the
trigonometric potential has a single well whereas the hy-
perbolic potential becomes a double well potential. This is
illustrated in Figures 6 and 7 for 3 = —3/4, which display
eigenenergies and eigenfunctions for x = 5 and k = 6,
respectively. Again the A (or B) energy levels are anti-
isospectral with the eigenenergies of the Razavy system
shown in panel C of the two figures. For k = 5 (k = 6),
there are three A states (four B states) below the maxi-
mum of the trigonometric potential or above the barrier
of the hyperbolic potential. These states are again essen-
tially like harmonic oscillator states, but slightly affected
by tunneling in some cases. The remaining two analytic A
(B) states form a near-degenerate doublet. In the trigono-
metric case these doublet states resemble free rotor states
above the barrier. In the hyperbolic case, they form a tun-
neling doublet below the barrier.

In the field-free limit, § = 0, the analytic energies given
in Table 4 simplify to

2
E§£>:_E§fge{(;) ,O§|V|§I€—1} (50)


http://www.epj.org

Eur. Phys. J. D (2017) 71: 149

Page 13 of 20

T T

T

20

=20 |

C 120

\4 <
T y
-40 ji\L Af\ 1-40
\/ VARV o
-60 1 -60r 1 1-60
A B
-80 : : : -80 : : : -80
- 0 T - T -2 0 2

X

Fig. 4. Trigonometric V; (A, B) and inverted hyperbolic —V} (C) potentials for 8 = —5, with analytical (dotted lines) and
numerical (dashed lines) eigenenergies and wavefunctions (full curves). For xk = 5, the energies F; for periodic states (A) are

anti-isospectral with Razavy energies Ej,.
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Fig. 5. Same as Figure 4 but for k = 6, where the energies F; for anti-periodic pendular states (B) are anti-isospectral to E},.

with even v for A; and As states (for odd &) or odd v
for By and Bj states (for even k). Note that a v = 0
state exists only for A;. These eigenvalues can also be

found by directly inserting 5 = 0 in all four T,EF’ matri-
ces, equations (34)—(37). Then all subdiagonal elements
vanish, thereby rendering these matrices exactly solvable
with the above eigenvalues. Alternatively, one can also ar-
rive at the same solutions by setting 8 = 0 in equation (13)

or (28), in which case they become Chebychev (type I)
equations.

For the pendular system in the field-free (8 = 0) limit,
these results can be simply understood as the energy levels
of a free rotor, but with the quantum number v divided by
two in order to account for the periodicity which is here
4r instead of the usual 27.
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Fig. 6. Same as Figure 4 but for 8 = —3/4. For k = 5, the energies E: for periodic states(A) are anti-isospectral to Fj,.

For the hyperbolic counterpart, however, it is not pos-
sible to reach the f = 0 limit continuously. Instead, we
consider the limit of 3 — 0, where the Razavy potential
takes the form of a double Morse potential [55]

e—(”“n(\g\)))z

2

. K
i Valw) = (1_

2 2

+ Z (1 _ e(m*“‘(\g\))f _ '; )

Here the distance d = 21In(x/|8|) of the two wells increases
with decreasing |3|, but the dissociation energy depends
only on &, see also Section 2.2. For each of the two Morse
oscillators alone (d — o0), the energy levels are exactly as
given above in equation (50). All these states are bound
states except for v = 0 (4;), the energy of which coin-
cides with the dissociation threshold. By decreasing the
distance d (increasing |3]) between the two wells of the
double Morse oscillator, equation (51), the energy levels
will increasingly perturb one another and near-degenerate
tunneling doublets will eventually form.

(51)

3.5.3 Near-degenerate doublets

For small |§|-values, the degeneracies found for § = 0 are
lifted and instead near-degenerate doublets are formed, see
again Figures 6 and 7. These doublets are found near the
free rotor limit of the trigonometric system or as tunnel-
ing doublets in the hyperbolic system. The corresponding
splittings can be derived from Table 4. Because they apply
equally to the two classes of systems, we will drop the ¢
and h subscripts on the energies. For the simplest example
(k = 2), we find by using equation (39)

(85" )o -

(ESP2)o| = 218). (52)

Similarly, for k = 3, the splitting between the lowest two
states (A; and Az) as obtained from (41) and (43) is

(B — (BSM)o| = 482 + 0(8Y) (53)

where the third power, as well as all other odd powers,
of 8 vanish identically. Note that the third analytic state,
v =0 (A1) in equation (43), already lies above the barrier.
For k = 4, the four analytic states comprise two tunneling
doublets with energy splittings

’(E(Bl) E(B2) 3|ﬁ|3+0 ﬂS)

0

(B = (BP))| = 418) + 318 + 0(5%) (54)

where the splitting of the upper doublet is much larger
than the lower one for § — 0.

For higher x this pattern for the analytic states in the
limit of small 8 continues. For even k, there are always
/2 doublets. For odd k, there are only (k —1)/2 doublets
whereas the highest single A; state lies always above the
barrier, see Figure 8. As already mentioned, the splittings
increase with the energies of the doublets. With increas-
ing | 3], the splittings grow larger, and the doublets become
single states. Typically, this behavior is found where the
energy curves cross the black dotted curves also shown in
Figure 8. For the pendular system this means that the en-
ergies fall below the maxima of the potential, where the
transition from a (nearly) free rotor to a liberator (angular
oscillator) takes place. For the Razavy system this corre-
sponds to the energies exceeding the potential barrier of
the double well, i.e., the transition from tunneling to a
single oscillator.
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Fig. 8. Analytic energy levels of the trigonometric (—Fy ) and hyperbolic (En . = —E; ) system for small values of |G| for
2 < k < 5. In the limit of 8 — 0 there are /2 doublets for even k or (x —1)/2 doublets for odd . The dashed lines indicate the
minima of the Razavy potential. The dotted curves show the maximum of the Razavy potential, or the negative of the maxima

of the pendular potential.

4 Numerical solutions

Up to this point we discussed the analytic eigenproper-
ties of the finite, N,gr)—dimensional blocks of the matri-
ces given in equations (34)—(37). However, these solutions
were restricted to the case of odd (or even) integer  for
periodicity pertaining to the A (or B) symmetry, because
only in those cases the infinite-dimensional matrices given
in equations (17)—(19) could be broken into two blocks
each, due to the presence of a single zero entry in the

respective subdiagonals. In this section, we go beyond the
C-QES (and AIS) solution spaces and consider the com-
plete spectra of the pendular and the Razavy systems.

4.1 Numerical diagonalization of truncated tridiagonal
matrices

The tridiagonal matrices equations (17)—(19) can also be
used to obtain the eigenvalues and eigenfunctions of the
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trigonometric system numerically. The accuracy of the
eigenproperties depends on the dimension of the matri-
ces used for the numerical diagonalization, i.e., on their
truncation (typically at a dimension of a few hundred, de-
pending on the magnitude of 3). Table 5 provides a list of
the numerical pendular eigenenergies. The resulting eigen-
vectors can be used to construct the corresponding eigen-
functions, again as products of von Mises functions, seed
functions, and (even ordered) polynomials in cos(6/2), cf.
equation (38),

()

(k=1)/2

0
Z (A1)> 20
(U"‘ n,t o8 2

£=0 ’

o eﬁcos@

( (Bl)>
t,Kk n

( (32)>
t,K n

(k=3)/2

Z (v£A2)> ot cos?! g

£=0

o €030 gin g

( (A2)>
t,K n

+ i (vff”)necoswz (55)

t=(rk—1)/2

It is known from the literature on the Whittaker-Hill equa-
tion [43,56] that the above expansions can be split: while

the first N,ﬁ” columns are different for each of the four
irreducible representations, the remaining columns are the
same for the two classes of 2m-periodic solutions (A; and
As) and also for the 27-antiperiodic solutions (B; and
Bs). Hence, there is no need for subscripts 1 or 2 on the
irreducible representations denoting the v matrices in the
second terms of the above equations.

However, for the hyperbolic system an ansatz equiva-
lent to equation (55), but with the trigonometric functions
replaced by their hyperbolic counterparts, results in non-
normalizable wavefunctions. Unlike the finite-dimensional
case discussed in Section 3, the infinite sums lead to a
strong divergence for x — =00, because the cosh func-
tions outweigh the hyperbolic von Mises function (even for
8 < 0). We note that this problem is connected with the
anti-isospectral transform given by equation (6). While
the solutions to the trigonometric problem are square-
integrable for —27 < 0 < 2, this mapping renders the
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solutions of the hyperbolic problem square-integrable on
the —2im < x < 2i7 interval, rather than —oo < x < oo,
as required for the Razavy potential. Hence, the approach
outlined in Section 3.3, based on the tridiagonal matri-
ces (17)—(19), is not suitable for generating states beyond
the range of the analytic solutions of the hyperbolic sys-
tem. Instead, we use the Fourier Grid Hamiltonian (FGH)
approach [57,58] implemented in the gm bound program
of the WAVEPACKET software package [54]. Within the
energy ranges considered here, well-converged energies are
obtained using 1024 equally spaced grid points.

These numerical techniques allow us to calculate two
types of energy levels which could not be obtained with
the analytic methods developed in Section 3. Firstly, for
the pendular system, these are the B; and By symme-
try states for odd values of k as well as the A; and As
symmetry states for even values of k. As can be seen
in Table 5, these values barely differ from their analytic
counterparts. However, this is only due to the rather large
value of |G| = 5 chosen here; for other values, see below.
Secondly, Tables 5 and 6 also contain energy levels with

n > N,SF’, i.e., beyond the energetically highest analytic
states. A more thorough discussion of this part of the spec-
tra as well as the spectra obtained for non-integer values
of k is provided below.

4.2 Anti-isospectrality

Figures 9 and 10 show, respectively, the energy levels of
both the pendular and the Razavy systems as continu-
ous function of n (or k) for large and small values of
|8]. In both cases the lower dashed lines show the global
minimum of the pendular potential. The upper dashed
lines/curves show the negative of the minimum/minima of
the Razavy potential (which coincide with the local min-
imum of the pendulum in case of |3| > £/2 only). These
boundaries define the interval of quasi-exact solvability,
Vi(0min.g)s —Vi(@min)]. As indicated by the black circles
in Figures 9 and 10, all analytic eigenvalues obtained by
the methods of Section 3 are restricted to this interval. As
required by the anti-isospectrality, equation (33), these
circles are found at the crossings of the energy curves for
the pendular system (green and blue) with the negative
energy curves of the Razavy system (red and orange).
These crossings are located at odd integer x for the A
states of the pendulum (4; <« A, Ay < A”) or even
values of k for the B states of the pendulum (B; < A,
By «— A”), see Figures 9 and 10. Note that between these
values of x the anti-isospectrality does not hold. This in-
cludes the case of the other crossings in Figures 9 and 10
that are only accidentally close to those for even values of
K for A states and odd values of k for B states.

4.3 Genuine and avoided crossings
Finally, we discuss the spectral structures of each of the

potentials separately. The Schréodinger equation (4) for the
Razavy system is a non-periodic Sturm-Liouville equation.
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Fig. 9. Energies of periodic (panel A) and anti-periodic (panel B) states of the planar pendulum and inverted energies of the
Razavy system for 3 = —5. For this choice of 3, V% is a double well with a local minimum (thick dashed line) of V;(€ymin,1), a global
minimum (dashed line) and a maximum (dotted curve); V} is a single well potential whose minimum (shown by the thick dashed
line) is Vi(0min,i) = —Vi(Zmin). The colors follow the scheme introduced in Figure 3. Circles show analytic eigenenergies, which
coincide for the trigonometric and hyperbolic systems. The numerical values were obtained with WAVEPACKET software [54].

Hence the energy levels are non-degenerate and can be
ordered as

(4 (") () (")
(B), < (B2, < (81), < (81,

< (E}(f;))él < (56)

where — from now on — the numbering of the energy levels
n=0,1,2,...1is irrespective of the irreducible representa-
tions. This strictly monotonic growth scheme also applies
to the near degenerate energy levels in the upper part of
Figure 10, see discussion at the end of Section 3.5. There,
the tuneling doublets lie below the barrier of the Razavy
potential and are separated from other energy levels above
the maximum of the potential which are all single states.

In contrast, the Schrédinger equation (3) for the
trigonometric system is a periodic Sturm-Liouville equa-
tion. Hence, the oscillation theorem can be applied. This
theorem classifies the eigenvalues of such an equation with
respect to the periodic and anti-periodic boundary condi-
tions of their corresponding eigenfunctions [43,59,60]. In
particular, it states that the spectrum of the planar quan-
tum pendulum is purely discrete and there is a sequence

of real eigenvalues
(82), < (2), < (B2), < (=2, = (2),
< (s, = (52, < -

where, again, the numbering of the energy levels is ir-
respective of the irreducible representations. No distinc-
tion between A; and As (B; and Bs) is given here be-
cause there is no unique pattern. The first 2« levels are
within the interval of quasi-exact solvability and are non-
degenerate (single states); their ordering pattern is (4y,
By, Ba, Aa,...). Above this interval, the ordering pattern
changes, which is connected with the genuine and avoided
crossings in the upper part of the spectra shown in Fig-
ures 9 and 10. Genuine crossings are found for odd « for
all A states beyond the k analytic, single states. Simi-
larly, for B states these degeneracies appear only for even
k. This is the expected behavior due to the coexistence
theorem [16,43,56] for the Whittaker-Hill equation (3),
which states that there can be pairs of linearly indepen-
dent coexisting solutions, of period 27 for the same value

(57)

of Et(:il) = Et(:i?) if and only if  is an odd integer. Sim-
ilarly, pairs of 2m-antiperiodic solutions can coexist for
eigenenergy Et(il) = Et(f;?) if and only if x is an even
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0 2 4 6

Fig. 10. Energies of periodic (panel A) and anti-periodic (panel B) states of the planar pendulum and inverted energies of
the Razavy system, for 3 = —3/4. On the left side of the vertical (dash-dotted) line, the potentials are qualitatively the same
as in Figure 9. On the right side, V; is a single well potential with a minimum (dashed line) and a maximum (thick dotted
line) whereas V}, is a double well potential with two equal minima (dashed curve) and one maximum (thick dotted line). The
colors follow the scheme introduced in Figure 3. Circles show analytic eigenenergies, which coincide for the trigonometric and
hyperbolic systems. The numerical values were obtained with WAVEPACKET software [54].

integer. Moreover, as a consequence of the coexistence the-
orem [16,43], one can predict that these degeneracies will
appear for all states above the interval of QES.

There are also avoided crossings above the interval of
QES in the upper part in Figures 9 and 10. For B states
they are found for odd k, whereas for A states they occur
for even k. In accordance with the Wigner-von Neumann
theorem (non-crossing rule), these avoided crossings in-
volve states pertaining to the same irreducible represen-
tations. Note that some of the gaps cannot be discerned
on the scale of the figures. Nevertheless, considering equa-
tion (57), it is apparent that there is a degenerate pair of
A states inside every gap between (Et(i))n and (Et(i))mrg
states for even k and vice versa for odd k. As a conse-
quence of the genuine and avoided crossings the pattern
of energy levels beyond the QES interval is (A;, By = Bo,
Ay, Ag, By = Ba, Ag,...) or (Ba, A1 = Ay, Bs, B,
Ay = Ag, By,.. ).

5 Conclusions and prospects

We showed that the planar pendulum and the Razavy
system possess symmetries isomorphic with those of the

point groups Cs, and C;, whereby the irreducible repre-
sentations Ay, B and As, By of Cs, correlate with the
irreducible representation A’ and A” of C;, respectively.
We found that the analytic solutions reported in refer-
ences [3,37] for the lowest states of the two systems indeed
exhibit these symmetries. Furthermore, we found a total
of 40 analytic solutions for the planar pendulum and de-
termined that even and 2w-periodic solutions correspond
to the Ay symmetry, odd and 27-periodic solutions to Ao,
even and 27m-antiperiodic solutions to By, and odd and 27
anti-periodic solutions to By symmetry. For the Razavy
system we found that the solutions are non-periodic, of
even or odd parity for the A’ or A” symmetry, respec-
tively. For the dimensionless interaction parameters 7 and
¢ such that |n| > 2¢, the pendular potential is a single well
whereas the Razavy potential is a double well, provided
that, in addition, n < 0. Conversely, for || < 2¢, the pen-
dular potential is a double well and the Razavy potential
a single well, provided n < 0.

In reference [3], we showed that the topology of the
intersections (genuine or avoided) of the planar pendu-
lum’s eigenenergy surfaces, spanned by 7 and (, can be
characterized by a single integer index x (the topological
index) and that the values of x correspond to the sets
of conditions imposed on 7 and ¢ under which analytic
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solutions of the planar quantum pendulum problem ob-
tain. The parabolic surfaces running through the loci of
the intersections for a given k can be termed parabo-
lae of conditional quasi-exact solvability. In the present
work we were able to trace the origin of the parabolae
of quasi-exact solvability to the structure of the tridiag-
onal matrices representing the symmetry-adapted pendu-
lar Hamiltonian: if and only if x is an odd/even positive
integer can the tridiagonal matrices, each of which corre-
sponds to one of the problem’s four irreducible represen-
tations, be broken into dimensional matrices and infinite-
dimensional remainders, whereby the finite-dimensional
matrices can be diagonalized, at least in principal, analyt-
ically, with solutions that are periodic/antiperiodic in 27.
The dimensions of the finite block matrices add up to the
topological index k, which, therefore, equals the number
of analytic solutions. Although we can find, in principle,
infinitely many analytic solutions, we cannot find all solu-
tions analytically. In particular, the solutions that remain
out of reach are those that correspond to either n or (
equal to zero (i.e., no analytic solutions to the Mathieu
equation obtain). For non-integer k, the tridiagonal ma-
trices are infinite and, therefore, not amenable to analytic
diagonalization.

We have shown that, despite the rather different sym-
metries and irreducible representations, the pendular and
Razavy Hamiltonians can be represented by the same
four tridiagonal matrices, cf. also [2]. Hence the exactly
solvable parts of their spectra are the same (up to a
sign), which renders the pendular and Razavy systems
anti-isospectral (AIS). The iso-spectrality occurs for single
states only (i.e., not for doublets). Moreover, at a given &,
the anti-isospectrality occurs for single states ounly (i.e.,
not for doublets), like C-QES holds solely for integer val-
ues of k, and only occurs for the lowest eigenvalues of
the pendular and Razavy Hamiltonians, with the order
of the eigenvalues reversed for the latter. For all other
states, the pendular and Razavy spectra become in fact
qualitatively different, as higher pendular states appear
as doublets and higher Razavy doublets appear as single
states.

The study of the two-dimensional (2D) planar pendu-
lum proved its worth in providing inspiration for solving
the full-fledged three-dimensional (3D) pendulum eigen-
problem, cf. references [3,61-63]. In particular, the lowest
2D solutions could be used as Ansatz for the superpo-
tentials [36,64] on which the search for analytic solutions
via supersymmetric quantum mechanics relies. Equipped
with many more analytic solutions in 2D, this search will
continue.

Last but not least, the analytic solvability of the time-
dependent pendular eigenproblem [65-69] — both in 2D
and 3D — will be investigated in pursuit of dynamical mod-
els of the interactions of molecules with electric, magnetic
and optical fields.
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