Skip to main content
Log in

Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by systematic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states, with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the vortex solitons is provided by the Thomas-Fermi approximation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)

    Article  ADS  Google Scholar 

  2. G.-L. Oppo, M. Brambilla, L.A. Lugiato, Phys. Rev. A 49, 2028 (1994)

    Article  ADS  Google Scholar 

  3. M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, W.J. Firth, Phys. Rev. Lett. 79, 2042 (1997)

    Article  ADS  Google Scholar 

  4. L. Gelens, D. Gomila, G. Van der Sande, J. Danckaert, P. Colet, M.A. Matías, Phys. Rev. A 77, 033841 (2008)

    Article  ADS  Google Scholar 

  5. T. Miyaji, I. Ohnishi, Y. Tsutsumi, Physica D 239, 2066 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Panajotov, D. Puzyrev, A.G. Vladimirov, S.V. Gurevich, M. Tlidi, Phys. Rev. A 93, 043835 (2016)

    Article  ADS  Google Scholar 

  7. G.J. de Valcárcel, K. Staliunas, Phys. Rev. A 87, 043802 (2013)

    Article  ADS  Google Scholar 

  8. P. Parra-Rivas, D. Gomila, M.A. Matías, S. Coen, L. Gelens, Phys. Rev. A 89, 043813 (2014)

    Article  ADS  Google Scholar 

  9. C. Godey, I.V. Balakireva, A. Coillet, Y.K. Chembo, Phys. Rev. A 89, 063814 (2014)

    Article  ADS  Google Scholar 

  10. T. Hansson, S. Wabnitz, J. Opt. Soc. Am. B 32, 1259 (2015)

    Article  ADS  Google Scholar 

  11. F. Copie, M. Conforti, A. Kudlinski, A. Mussot, S. Trillo, Phys. Rev. Lett. 116, 143901 (2016)

    Article  ADS  Google Scholar 

  12. P. Parra-Rivas, E. Knobloch, D. Gomila, L. Gelens, Phys. Rev. A 93, 063839 (2016)

    Article  ADS  Google Scholar 

  13. J.K. Jang, M. Erkintalo, K. Luo, G.-L. Oppo, S. Coen, S. G. Murdoch, New J. Phys. 18, 0336034 (2016)

    Google Scholar 

  14. A.B. Matsko, L. Maleki, Opt. Exp. 21, 28862 (2013)

    Article  ADS  Google Scholar 

  15. L.P. Pitaevskii, A. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)

  16. E. Cerboneschi, R. Mannella, E. Arimondo, L. Salasnich, Phys. Lett. A 249, 495 (1998)

    Article  ADS  Google Scholar 

  17. M.L. Chiofalo, S. Succi, M.P. Tosi, Phys. Rev. E 62, 7438 (2000)

    Article  ADS  Google Scholar 

  18. X. Antoine, W. Baoc, C. Besse, Comp. Phys. Commun. 184, 2621 (2013)

    Article  ADS  Google Scholar 

  19. J.W. Eaton, D. Bateman, S. Hauberg, GNU Octave Manual – Version 3 (Network Theory Ltd., UK, 2008)

  20. J. Yang, Nonlinear waves in integrable and nonintegrable systems (SIAM, Philadelphia, USA, 2010)

  21. S. Coen, H.G. Randle, S. Thibaut, M. Erkinalo, Opt. Lett. 38, 37 (2013)

    Article  ADS  Google Scholar 

  22. T. Hansson, S. Wabnitz, Nanophotonics 5, 231 (2016)

    Article  Google Scholar 

  23. L. Bergé, Phys. Rep. 303, 259 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Fibich, The Nonlinear Schrödinger Equation, Singular Solutions and Optical Collapse (Springer, Heidelberg, 2015)

  25. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  26. I.V. Basistiy, V.Yu. Bazhenov, M.S. Soskin, M.V. Vasnetsov, Opt. Commun. 103, 422 (1993)

    Article  ADS  Google Scholar 

  27. S. Franke-Arnold, L. Allen, M. Padgett, Laser Photon. Rev. 2, 299 (2008)

    Article  Google Scholar 

  28. L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 59, 2990 (1999)

    Article  ADS  Google Scholar 

  29. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  30. L. Salasnich, B.A. Malomed, Phys. Rev. A 79, 053620 (2009)

    Article  ADS  Google Scholar 

  31. R. Driben, Y.V. Kartashov, B.A. Malomed, T. Meier, L. Torner, Phys. Rev. Lett. 112, 020404 (2014)

    Article  ADS  Google Scholar 

  32. J. Qin, G. Dong, B.A. Malomed, Phys. Rev. A 94, 053611 (2016)

    Article  ADS  Google Scholar 

  33. T. Bohr, G. Huber, E. Ott, Physica D 106, 95 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Gabbay, E. Ott, P.N. Guzdar, Phys. Rev. A 118, 371 (1998)

    Google Scholar 

  35. L.-C. Crasovan, B.A. Malomed, D. Mihalache, Phys. Rev. E 63, 016605 (2001)

    Article  ADS  Google Scholar 

  36. D. Mihalache, D. Mazilu, F. Lederer, Y.V. Kartashov, L.-C. Crasovan, L. Torner, B.A. Malomed, Phys. Rev. Lett. 97, 073904 (2006)

    Article  ADS  Google Scholar 

  37. J. Atai, Y.J. Chen, J.M. Soto-Crespo, Phys. Rev. A 49, R3170 (1994)

    Article  ADS  Google Scholar 

  38. A. Dubietis, G. Tamosauskas, G. Fibich, B. Ilan, Opt. Lett. 29, 1126 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley B. Cardoso.

Additional information

Contribution to the Topical Issue: “Theory and Applications of the Lugiato-Lefever Equation”, edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, W.B., Salasnich, L. & Malomed, B.A. Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation. Eur. Phys. J. D 71, 112 (2017). https://doi.org/10.1140/epjd/e2017-80060-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80060-7

Navigation